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A Speaker-Independent,  Syntax-Directed,  Connected 
Word Recognition System Based on Hidden Markov 

Models and  Level  Building 

Abstract-In the  last several years, a wide variety  of  techniques have 
been developed which make  practical the implementation  and develop- 
ment  of  large  networks for recognizing  connected  sequences of words. 
Included  among  these  techniques are efficient and  accurate  speech 
modeling  methods  (e.g.,, vector quantization,  hidden Markov models) 
and  efficient,  optimal network search  procedures (i.e., level building). 
In this  paper we show  how to integrate  these  techniques  to give a 
speaker-independent,  syntax-directed,  connected word recognition sys- 
tem which requires only a modest  amount  of  computation,  and whose 
performance  is  comparable  to  that  of  previous  recognizers  requiring 
an order  of  magnitude  more  computation. In particular,  the  recognizer 
we studied was an  airlines  information and reservation system using a 
129 word vocabulary,  and a deterministic  syntax  (grammar)  with  144 
states, 450 state  transitions,  and 21 final states,  generating more than 
6 X lo9 sentences. An evaluation  of  the  system,  using six talkers  each 
speaking 51 test  sentences,  yielded a sentence  accuracy  of  about 75 per- 
cent  resulting  from a word accuracy  of  about 93 percent, for an average 
speaking  rate  of  about 210  words per  minute. 

I 
I. INTRODUCTION 

N  the  laboratory,  techniques for speech recognition have 
evolved to  the point where it is possible to undertake 

usefully large, complex recognition tasks based on search- 
ing networks in  a computationally efficient and reliable 
manner. The earliest such systems included DRAGON and 
HARPY  at  Carnegie Mellon University [l], [2], and the 
IBM System [3]. These recognition systems relied on a 
single large network to represent  all possible sentences in 
the language,  and efficient heuristic search procedures 
(e.g., the  “beam  search” for HARPY  and  the  “stack al- 
gorithm” for the IBM system) to find, for a given spoken 
input,  the  maximum likelihood sentence in the  language. 
An excellent review of the  parameters of and performance 
achieved by these systems is given by Klatt [4]. 

Somewhat different in spirit, but certainly in the class 
of “difficult” speech recognition tasks,  our own work  [5]- 
[7] has used a  smaller vocabulary and a more restrictive 
syntactic structure in order  to allow for speaker indepen- 
dence, telephone inputs,  and on-line spoken human-ma- 
chine conversation. Our system was based on a syntax- 
directed, level-building search  procedure  [7], [8] and, 
although very costly to implement, provided very good 
performance on tasks  related  to  airline timetable infor- 
mation [7]. A  major  architectural difference between the 
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airline  system  and  the above cited  systems was that its 
basic recognition unit was the word, whereas units smaller 
than words were used in HARPY and the IBM system. As 
a  result,  the size of the network to be searched  in  the  air- 
line  system was considerably smaller  than  the size of the 
networks of HARPY or  IBM, and  thus,  an  optimal  search 
became feasible. 

More recently a  great  deal of work has been done on 
learning how to model individual words by hidden Markov 
models (HMM’s) with a small number of states.  In par- 
ticular, by using a  discrete symbol representation of the 
linear predictive coding (LPC) vectors derived from an 
analysis of the incoming speech,  a  series of speaker-in- 
dependent word models has been built for both the digits 
[9] and the  airline [lo] vocabularies. Single-word HMM’s 
have previously been proposed by Bakis [ll]; however, 
these models had the number of states comparable to  the 
number of frames in the word and,  thus, were different 
from those used in [9] and [ 101. For the  airline vocabulary, 
isolated word error rates on the  order of  15 percent were 
achieved using a word recognition system with an order of 
magnitude less computation than a conventional dynamic 
time warping (DTW)  approach. We were sufficiently en- 
couraged by these  results  that we decided  to combine the 
syntax-directed level building search with the isolated 
word HMM’s  in  an  attempt  to achieve a robust, accurate, 
connected word recognizer whose performance compared 
favorably to that of the  DTW  approach [lo], but with 
greatly reduced computational load. It  is  the purpose of 
this paper to describe  our efforts towards this  goal. 

In  the  course of implementing the  system, we primarily 
used well-known algorithms for recognition (e.g., Viterbi 
scoring of HMM’s LB on words, etc.). However,  we did 
incorporate two techniques which had not been used pre- 
viously in our own investigations, namely: 

1) a global sentence energy normalization which served 
to equalize  the level of energy  peaks  during  stressed vow- 
els of each word in  the  sentence; 

2) a  postprocessor probabilistic word duration model to 
incorporate  some finer temporal  constraints  into  the level 
building solution. 

Thus,  this  paper  is  primarily  an experimental investi- 
gation of the performance of well-known recognition al- 
gorithms (with  the two small exceptions above) applied to 
a  speaker-independent, telephone line  input,  task-oriented 
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Fig. 1. Block diagram of syntax-directed HMM/LB connected word rec- 
ognizer. 

application. Several experiments were run to investigate 
the effects on overall system performance of each of the 
above techniques. Also, a  comparison, in terms of both 
computational complexity and performance, was made be- 
tween the HMM system and a comparable DTW  ap- 
proach. 

The  organization of this paper is as follows. In Section 
I1 we review the overall structure of the  syntax-directed, 
level-building HMM recognizer. Brief reviews of the var- 
ious algorithms used to implement the system are given 
here.  In  Section I11 we outline  the  characteristic of the 
airline  reservation and information system and describe  a 
formal evaluation of the overall recognition system. In this 
section we present experimental results on both the HMM/ 
LB and  DTW/LB systems and discuss the key similarities 
and differences, and in Section IV we outline areas in 
which  model improvements are required. 

11. OVERALL STRUCTURE OF THE 

HMM/LB RECOGNIZER 

Fig. 1 shows a block diagram of the HMM/LB con- 
nected word recognizer. There  are essentially four steps 
in the recognition process involving three externally gen- 
erated  datasets.  Thus,  the implementation of Fig. 1 re- 
quires the specification of six processes,  as follows. 

1) LPC analysis of the unknown connected word string. 
2) Generation of a codebook of M *  vectors for vector 

quantization of the sequence of LPC vectors of the con- 
nected word string. 

3) Generation of a set of hidden Markov models for each 
of the words in  the vocabulary. 
4) Generation of a syntax (a  deterministic  grammar) 

describing how vocabulary words are concatenated to give 
well-formed sentences in the  language. 

5 )  A set of optimal, syntax-constrained matches of se- 
quences of  word HMM's to the unknown connected word 
string.  One match for each possible terminal  state in the 
grammar is obtained. 

6) Selection of the optimal string. 
We  now describe,  in somewhat more detail, the pro- 

cessing in each stage of the system. 
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Fig. 2. Original  and  dynamically  normalized  energy plots for an  airlines 
reservation  sentence.  The bottom plot shows  the  energy  correction  term 
as  a function of the  frame number. 

A.  LPC Analysis 
The  LPC analysis is performed as follows. The speech 

signal s (n) ,  sampled at a 6.67 kHz rate, is first preem- 
phasized by a first-order digital network (P( z )  = 1 - 
8.952-I). The resulting signal is then blocked into frames 
of size N = 300 samples (45 ms), with adjacent frames 
separated by L = 100 samples (15 ms). Each frame is 
windowed by a Hamming window and an eighth-order au- 
tocorrelation analysis is performed. An eighth-order LPC 
analysis is then performed and  the autocorrelation vector 
is normalized by the LPC residual. The log energy of each 
frame is appended as  the  tenth  parameter of the vector for 
that  frame. 

A global energy normalization procedure is applied to 
the  entire  connected word string 1121. The purpose of the 
energy normalization is to adjust the  sentence energy con- 
tour so the peak energy is at or close to 0 dB for each 
word. In this manner  the individual word energy contours 
can be used to aid in the recognition of  words as they oc- 
cur in the sentence  context. Fig. 2 illustrates  the effect of 
the global energy normalization on the log energy contour 
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for the  sentence  /I would like  to  return on Wednesday 
afternoon  the  one  three  October/.  The solid curve at the 
top is the  original  (unnormalized) log energy contour, and 
the  dashed  curve is the normalized log energy contour. 
The  curve  at  the bottom of the  figure is the energy cor- 
rection applied to  the  normalized log energy contour to 
give the  unnormalized log energy contour. It can be seen 
that  as much as  a 15 dB boost is required to equalize the 
word peaks to  a common 0 dB level. Although the energy 
normalization provides a significant improvement, it does 
not  always guarantee  that  the peak energy within a word 
will reach 0 dB. This  is especially true for short function 
words within a  sentence. However, experimentation has 
shown substantial  performance improvements using this 
energy normalization scheme for some connected word 
recognition applications [ 121. 

B. Generation of the VQ Codebook 
The VQ codebook contains  a set of M *  vectors which 

provide the minimum average distortion (distance) be- 
tween a given training set of analysis vectors and  the code- 
book entries.  In  particular we used a codebook with 
M *  = 128 vectors,  where  each vector was a ten-compo- 
nent vector containing  nine residual normalized autocor- 
relations and  a  normalized log energy value.. The  training 
set consisted of about 100 000 vectors derived from iso- 
lated tokens of the words in the vocabulary used for the 
recognizer. A simple peak log energy normalization, 
within each word, was used to give the normalized log 
energy value for  each  frame. We denote normalized log 
energy by ,??I 

If we denote  the training set of vectors as ai, i = 1, 
2, - , Q, and  the  VQ codebook vectors as bj, j = 1, 
2, , M * ,  with 

b = (btpc, ER). (Ib) 

Then  the  distance’ between an arbitrary a and an arbitrary 
b is given by 

d(a,  by = dLPC(U,  b) + ad&, b) (2a) 

where VT i s  the  matrix of autocorrelations of the  LPC sys- 
tem with vector alp,-, 01 is a weighting multiplier on en- 
ergy distance, andf(E) is a nonlinear energy distance of 
the form 

(“ 
0 I E 5 EL0 

j ( E )  = E - EL0 + EOF EL0 > E I EHI (3) 

EHI - E m  + EOF EHI < E. 

Fig. 3 shows a plot off@) versus E. Basically, the energy 
distance is 0 for differences in log energy less than  a low 

‘“‘t 
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Fig. 3. The  nonlinearity used to compute log energy  distances. 

threshold (ELo), gives a  linear weight (with some possible 
offset) for log energy differences between ELoand EHI, and 
clips at some maximum distance for log energy differences 
greater than EHI. For our applications we used CY = 0.1, 

Given the combined LPC plus energy distance of (2) 
and (3), the design of the VQ codebook becomes one of 
choosing the  set (b j }  such that we satisfy the optimization 
criterion 

E L 0  = 6 (dB), EHI = 26  (dB), EOF = 6 (dB) 1131. 

Q 
D M *  = min [l c min [d(ai, bj)]].  (4) 

{ b )  Q i = l   l s j s M *  J 

Various iterative algorithms for approximating  the  min- 
imization of (4) have been proposed and shown to work 
quite well over a wide range of conditions [14], [15]. 

C. Vector Quantization of the  Input  Analysis Vectors 
Once  the  VQ codebook has been designed, quantization 

of the input analysis vectors involves computing the dis- 
tance [according to (3)] between the input vector and each 
of the M* codebook vectors,  and assigning the index of 
the codebook vector which  gave the minimum distance  to 
the  test  frame.  Thus, for the input vector corresponding 
to frame t ,  a,, we  compute 

= d(a,, bj), j = 1 ,  2, + * - , M* (5a) 

0, = argmin [a;]. 
l s j s M *  

The computation of ( 5 )  is  performed for all input frames 
giving the  observation sequence O,, t = 1, 2, * , T, 
where Tis  the number of frames of speech,  and 0, is  the 
index of the  VQ codebook entry  that best matches the LPC 
vector for that  frame. 

D. Generation of Set of Word H M M s  
The idea of representing speech events by Markov 

models has been used in several speech processing sys- 
tems [ 11, [ 111, [ 161, [ 171. Most recently, several research- 
ers have used hidden Markov models to  characterize in- 
dividual words for recognition [9] , [ lo], [ 181. The form of 
the Markov model used to  represent  each word is shown 
in Fig. 4. We assume  that  each word model has N states 
(where N is typically 5-10) and  is  characterized by a  state 
transition  matrix A ( N ~ N )  and  a symbol probability matrix 
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Fig. 4. Hidden  Markov  model structure  for  airlines vocabulary  words. 

B,M* x N). For isolated word models we assume A is tridi- 
agonal, i.e., 

a v # O  for j = i , i + l , i + 2  

= 0 otherwise. (6) 

The aq’s form a stochastic matrix,  i.e., 

ag 1 0 
N 
C aij = 1 V i. 

j =  1 

Thej, kth entry in B ,  bj(k) ,  is  the probability of observing 
symbol k given state j ;  the bj(k)’s satisfy the stochastic 
constraint 

The model parameters ug, bj(k) ,  are  estimated from a 
training sequence of R sets of observations (a set of ob- 
servations  corresponds to one  utterance of a word) and are 
used to calculate  the probability of the observation set 
given a particular model M .  Reestimation formulas, due 
to Baum et al. [ 191, were used to iteratively adjust the av’s 
and bj(k)’s until the probability of the observation se- 
quence conditioned on the  parameter values stops increas- 
ing significantly, or when some  other stopping criterion  is 
met (e.g.,  the number of iterations exceeds some limit). 

For the results  to  be  presented  in Section 111, we  used 
a value of N = 10 states for each word model. We also 
artificially introduced  the  constraint  that for all k ,  bj (k )  1 
E ,  i.e., no matter how  low the  estimated probability of an 
observation in a  state, we clamped it to the minimum value 
E .  Since  the bj(k)’s must satisfy the  constraint of (8), they 
had to  be  renormalized  once  the E lower bounds were im- 
posed. 

E. Formal Syntax 

The formal syntax of the language is described by a  state 
transition  diagram which defines all word sequences which 
are considered valid sentences. Fig. 5 shows the state 
transition  diagram for the  airline information and reser- 
vation system. Myers and Levinson [6] have shown how 
the  states of Fig. 5 (or any other finite state  transition dia- 
gram without loops) can be topologically sorted so that 
there  can  be  a  transition from state j to  state I ,  only if 
. j  < 2. The use of this  procedure  is not conceptually im- 
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portant but allows a convenient representation of the 4 

grammar in a table organized by initial state, final state, 
and vocabulary words joining  them.  This table requires 
198 entries to represent the grammar, which has 144 
states, 450 transitions, and 21 terminal  states.  The lan- 
guage specified by the  grammar  has > 6 X lo9 sentences, 
each of which is both syntactically and semantically well 
formed. The  sentences range in length from 4 to 22 words, 
the average (assuming all sentences  to be equally likely) 
is 17 words/sentence.  The maximum entropy of the  lan- 
guage (allowing for  all possible probability distributions of 
sentences) is 2.15 bitdword  [20]. 

F. Maximum Likelihood String Decoding 
Using the LB Algorithm 

Given the individual word models Wj for each word  in 
the vocabulary, and given a  test sequence of observations 
0,, t = 1,2,  - * , T, corresponding to a sequence of words 
in the vocabulary, the  job of the recognizer is to decode 
0 into the sequence of words (Wrll,  WrZl, * * , Wrp,} that 
“best” matches the observation sequence in  the  sense that 
the  joint probability of the observation sequence and  state 
sequence is maximized. 

To understand how  we use the LB algorithm to solve for 
the Viterbi optimal string, consider the case shown in Fig. 
6, where we assume each word  model is a five-state model, 
and where we impose no syntactic constraints on the  sen- 
tences (i.e., any word model can follow any other word 
model). At  level l = 1  (the initial level), we begin by 
matching model q (W,) to the observation sequence 0, be- 
ginning at  frame l .  To do  the match we use a Viterbi de- 
coding of the following form. 

1) Initialization-bl(l) = [b7(01)], where 6, ( j )  signi- 
fies the  joint probability of partial state  and observation 
sequences, Pr[Ol, 02, - - , 0, and S1, S2, * - * , Sf- 1 ,  

j I A ,  B], where Si is the  state at time t = i, and 

& ( j )  = 0, j = 2, 3 ,  * , N .  

2) Recursion, for 2 I t I T,  1 5 j 5 N 

6,u) = max [bf-l(i) * [a:]] * [bj9(0,)] 
1 s i s N  

3 )  Termination-P(l, t ,  q) = 6 , ( N ) ,  1 5 t 5 T 

B(l, t ,  q) = 0. 

According to  step 3,  at  the output of the level  we  save 
the result in  an  array P ,  which is  a  function of the level 1,  
the  frame number t ,  and the vocabulary word q.  

At level l = 1 we  cycle through all words  in the vocab- 
ulary in the  manner described above. At the  end of the 
level (when all word models have been used) we  level re- 
duce to form the arrays 

P ( z ,  t )  = max [P(z ,  t ,  q)] (94 

& ( I ,  t) = B[Z,  t ,  argmax P ( I ,  t ,  4)1 (9b) 

@(z, t) = argmax [P(z ,  t ,  4)1 (9c) 

9 

4 
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Fig. 6. Implementation of level building  based on five-state HMM‘s for 
each  word. 

where I; is the level output best probability, B is the level 
output backpointer, and W is the level output word indi- 
cator. 

The computation for level 2 (and all higher levels) dif- 
fers only slightly in the initialization procedure. Since 
these levels  pick  up from previous outputs, we  have the 
initialization 

6,(1) = 0 ( 104 

6,(1) = max [P(I  - I ,  t - I ) ,  aT16,-,(1)] 

* [bf(O,)], 2 5 t 5 T 

I 
(lob) 

t - 1 if P ( z  - I ,  t - 1) > h t - l ( ~ )  * afl 

 CY,-^(^) otherwise. 
4 )  = 

(1W 

Equation (loa) sets 6,(1) to zero;  (lob) lets the level  pick 
up at the most appropriate place (or places) from the pre- 
vious level. Equation (11) creates  the  appropriate initial 
backpointer array, which records the  frame  at  the previous 
level in which the previous word ended.  During  the recur- 
sion (Step 2) the  backpointer is updated as 

cqu) = a,- I [argmax (6,- I(i) * a;)] (1 Ib) 

and at the  end of the level, the probability and backpointer 
arrays become 

I 5 i S . V  

P(Z, t ,  q) = 6,(N) 1 5 t 5 T 

B(Z, t ,  q) = ol,(N) 1 5 t 5 T. (12) 

Once  all the word models have been run  at any level, the 
reduced p ,  8, and  Warrays  are formed [using (9)] and the 
computation proceeds to the next  level. 

Technically speaking, both 6,G) and 01, ( j )  are functions 
of the word index q. However, since the relevant infor- 
mation is saved in the arrays P(I ,  t ,  q) and B(Z, t ,  q) [see 
(12)], the use of an explicit dependence on q in these func- 
tions is unnecessary. 

The  entire  procedure  terminates when some maximum 
number of levels L is used. A “best  string” of size L 
words, with probability p ( L ,  T ) ,  is obtained by back- 

Fig. 7. Illustrative deterministic  grammar  for showing how grammatical 
constraints  can  be  incorporated  into  the LB algorithm. 

tracking using the  backpointer  array @ ( I ,  t)  to give the 
words in the  string.  The  “best”  string is then given as the 
minimum of I;@, 7‘) over all possible  levels L. 

G. Incorporation of Syntax Into LB Algorithm 

To modify the LB algorithm described above to handle 
the syntactic constraints of the sorted state transition dia- 
gram is straightforward. One merely makes the associa- 
tion that the levels are uniquely identified with states rather 
than word position in  the  string, so that the candidates at 
the Zth level need not be temporally contiguous to those at 
the ( I  + 1)st level.  In this manner, the Ith  level (state), 
only those models corresponding to words leaving the Zth 
state  are matched. In addition,  another  set of  level back- 
pointers is required to link the  states (levels) in temporal 
order. Details of the required modifications are given in 

To illustrate  the incorporation of syntax into the LB al- 
gorithm, Fig. 7 shows a  trivial  grammar for a 13-word 
vocabulary consisting of the words 

[71. 

1. I 5.  ONE 9. BOOKS 13. OLD 
2. WANT 6. A 10. COAT 
3. NEED 7. AN 11. COATS 
4. THREE 8. BOOK 12. NEW 

The  terminal  state  in  the  grammar is indicated by an as- 
terisk. Typical sentences  generated by the  grammar  in- 
clude the following. 

1) I need a new coat. 
2) I need an old book. 
3) I want three  books. 
The  correspondence between states in the  grammar  and 

levels in the LB algorithm can be seen from the following 
table of current  state, words used, predecessor state,  cur- 
rent level, and predecessor levels: 

Current 
State  Words  Used 

2 I 
3 WANT 
4 NEED 
5 THREE 
6 A 
7 AN 
8 ONE 
8 NEW 
8 OLD 
9* BOOK, COAT 
9* BOOKS, COATS 

Predecessor  Current 
State Level 

1 1 
2 2 
2 3 
3 4 
4 5 
4 6 
3 7 
6 8 
7 9 
8 10 
5 11 

Predecessor 
Levels 

0 
1 
1 
2 
4 
4 
2 
5 
6 

7,8,9 
4 
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Again,  the  terminal  states (at which a  sentence can end) 
are marked by an  asterisk. 

This  trivial example illustrates  the  ease with which a 
deterministic  grammar  can  be incorporated into  the LB 
algorithm. 

H. Incorporation of Durational Constraints 
Into the LB Algorithm 

Since  the  HMM matches to the  test  string (or some part 
thereof) are  essentially  unconstrained temporally, it is 
possible to expand or  contract  a model so that it accounts 
for a  large  or  a small part of the  test  string, even though 
words on which the model was trained might never  have 
been as long or as short  as  the obtained matches.  In this 
manner a word like /Los-Angeles/ could be compressed to 
match a word like /A/ and vice versa. For a conventional 
DTW  alignment, such problems are  eliminated by the 
global durational  constraints built into  the algorithm. 

To handle three difficulties, a simple Gaussian duration 
model was assumed for each word in  the vocabulary, i.e., 
the probability density Pq (0) of duration D of the qth word 

where the mean and standard deviation, Dq and aq, re- 
spectively, were estimated (for each vocabulary word) as 
the sample mean and standard deviation of the  training 
data used to give the word models. 

The way in which the durational model was incorpo- 
rated  into  the LB algorithm was as follows. At the end of 
each level, the word duration d,, recovered from the  back- 
tracking  procedure, is given by 

dt = t - B(1, t ,  q) V t. (14) 

Then  the cumulative probability at  the end of the level  was 
modified to  be 

P"(L t ,  4) = P(L  t ,  4) [Pq(4l' (15) 

where y was a weighting parameter  that was optimized 
empirically. The weighted probability scores P"(1, t ,  q) 
were used in place of the unweighted scores P(1,  t ,  q) in 
(9),  at  the  end of each level. 

Although this method of incorporating durational infor- 
mation is clearly heuristic, in practice it improves the per- 
formance significantly by eliminating word candidates that 
are highly unlikely with respect to temporal information. 

I. Choosing the Optimal String 

For each  terminal  state (level.)  of the  grammar  (there are 
21 such states in the  state  diagram of Fig. 5 ) ,  the optimum 
sentence was traced  back.  The recognized sentence was 
the unique word sequence corresponding  to  the most prob- 
able state  sequence. For diagnostic purposes we also  pro- 
vided the capability of computing the probability of the 
actually spoken sentence  to  learn why an  error  occurred, 
and  to  be able to keep track of statistics on word scores. 

TABLE I 
WORDS IN THE AIRLINE VOCABULARY 

A  A.M. 
AMERICAN APRIL 

AFIZRNOON 
ARE 

AREA ARRNAL ARRIVE 
AT AUGUST B.A.C. 
B O W G  BOSTON BY 
CARD CASH 
CHICAGO CLAS 

CHARGE 

COACH 
CLUB 

CODE CEDlT 
D.C. 
DEPART 

DECEMBER DENVER 

DINERS 
DEPARTURE  DETROlT 

DOUGLAS EIGHT 
w DOES 

EVENING EXPRESS FARE 
ELEVEN 

FEBRUARY RRST RVE 
FLIGHT FLIGHTS 
FOUR FRIDAY 

FOR 

Go 
FROM 

I 
HOME 
IN 

HOW 
INFORMATION 

IS 
JUNE 
LOCKHEED 
MANY 
MAY 
MONDAY 
MY 
NIGHT 
NOVEMBER 
OCMBER 
OH 
P.M. 
PHONE 
PREFER 
RETURN 
SEATS 
SERVED 

TAKE 
SOME 

THEE 
THURSDAY 
To 
TWO 
WASHINGTON 
WHEN 

JANUARY 
LEAVE 
LOS-ANGELES 
MARCH 
MEAL 
MORNING 
NEW 
KINE 
NUMBER 
OF 
ON 
PAY 
PLANE 

SATURDAY 
REPEAT 

SEAlTLE 
SEVEN 

m 
STOPS 

THERE 
TIME 
TUESDAY 
UH 
WEDNESDAY 
WlLL 

JULY 
LME 
MAKE 
MAsrER 
MIAMI 
MUCH 
NEW-YORK 
NON-STOP 

OFFICE 
ONE 
PHILADELPHIA 
PLEASE 

SEAT 
RESERVATION 

SF.PTEMBER 
SIX 

THE 
SUNDAY 

THREE 
TIMES 
TlKELvE 
WANT 
WHAT 
WOULD 

o'aom 

J. Summary of HMM/LB Recognizer 
The sequence of operations used to recognize a spoken 

sentence are  as follows. 
1) LPC analysis (including sentence dynamic energy 

normalization). 
2) VQ in which the unknown utterance is represented 

as  a sequence of observations from  a  finite symbol vocab- 
ulary (the  set of VQ codebook entries). 

3) A syntax-directed LB match to the  sentence,  one 
state  at  a  time, based on a  finite  state  transition  diagram 
of the  language. 

4) Selection of the Viterbi optimal sentence among the 
set of sentences  corresponding  to  terminal  states (levels) 
in the system. 

In  the next section we outline  a  set of experiments that 
were performed  to  evaluate  the  performance of the  HMM/ 
LB recognizer. 

111. EVALUATION OF THE SYNTAX-DIRECTED 
HMM/LB  RECOGNIZER 

The specific task to which  we applied the syntax-di- 
rected,  HMM/LB  recognizer was the  airlines information 
and  reservation system [5]-[7]. For this system a vocab- 
ulary of 129 words (Table I) was required.  This.vocabulary 
includes very many highly confusable words, including the 
sets (DC, BAC), (MAY, MANY), (DO, TO, TWO),  (AM, 
PM), (IS, IN),  (TIME,  TIMES), (SEAT, SEATS), 
(FROM, SOME), (CODE, COACH), (WANT, WHAT), 
(NIGHT, FLIGHT,  FLIGHTS),  (A, PAY), (MUCH, 
MARCH), (I, BY, MY).  (THEE.  THREE).  etc. Previous 
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TABLE I1 
SENTENCES USED TO EVALUATE THE AIRLINE RECOGNITION SYSTEM 

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

11 
12 13 

15 
14 

16 
17 18 

19 
20 
21 
22 
23 
24 
25 
26 
27 
2.9 29 

30 
31 
32 
33 
Y 
35 

37 
36 

39 
38 

40 41 

44 45 

42 
43 

46 
47 
48 
49 
50 
51 

I WANT  TO  MAKE  A RESERVAnON 
I WOULD  LIKE  SOME INFORMATION PLEASE 
I WANT TO W FROM  NEW-YORX TO LOS-ANGELES ON 'IUESDAY  MORNING 
I WOULD LME TO RETURN ON  WEDNESDAY AFTERNOON THE ONE  THREE OCTOBER 
I WOULD  LIKE  A  NON-STOP  FLIGHT 
WHEN DO FLIGHTS  LEAVE PHILADELPHIA FOR DETROIT ON MONDAY AFI'ERNOON 

I WOULD  LIKE TO DEPART  AT  NIGHT 
I WANT TO GO AT  TWELVE O'CLOCK 

I WANT TOLEAVE IFTHE MORNING 
I WANT TO DEPART  FROM  BOSTON  ON THE EVENING OF THE OH NINE NOVEMBER 
HOW M A N Y  FLIGHTS ARE THERE FROM  WASHINGTON TO DEMrER ON THURSDAY  NIGHT 
HOW MANY FLIGHTS GO FROM SEAlTLE TO "I ON THE TWO EIGHT  FEBRUARY 
WHAT PLANE IS ON  FLIGHT TWO SIX TO CHICAGO 
HOW MANY STOPS ARE THERE ON THE FLIGHT 
I WOULD  LIKE  FLIGHT NUMBER FOUR ONE 

I WOULD  LIKE  A FIRST CLASS SEAT 
I WTLL TAKE  FLIGHT FlVE  THREE 

I NEED  THREE  SEATS 
I WANT  ONE  COACH SEAT 
WHAT IS THE FLIGHT  lZME  FROM  BOSTON TO CHICAGO 
IS A  MEAL  SERVED ON THE FLIGHT TO DENVER 
HOW  MUCH IS THE FARE 
WHAT IS FARE  FROM  DETROIT TO PHILADELPHIA ON SUNDAY  NIGHT 

AT WHAT lZME DOES FLIGHT SEVEN ONE TO SEATTLE  DEPART 
WHEN DOES FLIGHT  NUMBER TWO FROM LOSANGELES ARRIVE 

MY HOME  PHONE  NUMBER IS AREA CODE TWO OH ONE SIX TWO FOUR ONE TWO FOUR SIX 
MY OFFICE  PHONE  NUMBER  IS  FIVE THREE SIX TWO ONE FIVE TWO 
PLEASE REPEAT THE ARRIVAL TMES 
PLEASE REPEAT THE DEPARTURE TZME 
I WILL  PAY BY CREDIT  CARD 
I PREFER THE LOCKHEED  TEN  ELEVEN 
I PREFER THE BOEING  SEVEN  FOUR  SEVEN 
I PREFER THE D.C. NINE 
I PREFER THE DOUGLAS  D.C. TEN 
I PREFER THE B.A.C. TEN 
I WILL PAY BY MASTER CHARGE 
I WILL PAY BY CASH 
I WILL PAY BY DINERS CLUB 
I PAY BY AMERICAN EXPRESS 
I WANT TO GO AT ELEVEN  A.M. 
I WANT  TO  GO  AT SIX P.M. 
I WANT TO RETURN TO CHICAGO  ON THE THREE  OH DECEMBER 
I WOULD LIKE TO DEPART  ON  FRIDAY EVENMG 
I WOULD LIKE ONE FIRST CLASS SEAT ON FLIGHT NUMBER FOUR  FOUR TO LOSANGELES 
IWANTTORETURNONTHEOHNINEMARCH 
I WANT TO GO TO WASHINGTON  ON THE TWO FOUR APRIL 
I WOULD LIKE TO RETURN TO NEW-YORK ON THE OH ONE MAY 
I WANT TO LEAVE FOR  LOSANGELES ON THE MORNING OF THE ONE FOUR JUNE 
I WANT TO GO FROM BOSTON TO PHILADELPHIA  ON  TUESDAY M O W G  THE OH FOUR JULY 

AT WHAT TIME W FLIGHl3 LEAVE BOSTON FOR DENVER ON THE TWO SEVEN  SEPTEMBER 
I WOULD  LIKE TO RETURN ON THE OH SEVEN  AUGUST 

experimentation has shown that an isolated word recog- 
nition accuracy of about 88 percent in a speaker-trained 
mode and 91 percent in a speaker-independent mode is 
obtainable with the vocabulary [21], [22]. (Interestingly, 
since the speaker-independent mode used 12 templates per 
word, it was able to achieve slightly higher performance 
than  the speaker-dependent mode, which used one tem- 
plate per  word.) 

The  grammar,  or  syntax, for the system is the one given 
in Fig. 5. In the state  transition  diagram,  there  are 144 
distinct states with 450 state  transitions, 21 final states, 
and a capability of generating about 6, X lo9 distinct  sen- 
tences. When topologically sorted into the format conve- 
nient for implementation via  the level building algorithm, 
we get 198 equivalence classes of state transitions (i.e., 
those having the  same initial and final state). 

A .  Database Used in the Evaluation 
To evaluate the  performance of the system of Section 11, 

a  set of six talkers (five male, one female-all experienced 
users of speech recognition systems) each spoke a  set of 
51 sentences from the  airlines  grammar (see Table 11). The 
sentences  were carefully chosen to include every vocab- 
ulary word and every state  transition in the language.  The 
talkers were asked to read each sentence in a natural man- 

ner; no instructions as to speed or manner of articulation 
were given to the  talkers. 

Four of the six talkers also individually trained the sys- 
tem by using a robust training procedure [23] to provide 
speaker-dependent isolated word reference patterns. Using 
the robust training  procedure,  a single, isolated-word ref- 
erence  pattern was obtained for each word  of the vocab- 
ulary. These  patterns were used in a speaker-dependent 
evaluation of the  DTW/LB implementation of the  airline 
system. No attempt was made to train speaker dependent 
HMM's for these four talkers. 

The speaker-independent models (and also the  tem- 
plates) were derived from an  earlier  training set of 100 
talkers (50 male, 50 female), each of whom  used the ro- 
bust training  procedure to provide a single robust isolated 
word token for each of the 129 words in the vocabulary 
[22]. The six subjects who provided the test set were not 
among the 100 from whom the  training data were taken. 
For the DTW implementation, a  clustering analysis [24] 
of the 100 tokens of each word provided a set of 12 
speaker-independent templates for each word  in the vo- 
cabulary, where the  templates were created  as the cluster 
center obtained by averaging for each of the 12 largest 
clusters. (Template sets both with and without frame  en- 
ergy were created.) 
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TABLE  I11 
AVERAGE RATE AND RATE  RATIO STATISTICS FOR THE SlX TEST  TALKERS 

Similarly, for  the HMM's, the 100 training tokens of 
each word (suitably vector quantized) were used as input 
to  the Baum-Welch reestimation procedure to provide a 
single HMM for each vocabulary word. After much pre- 
liminary experimentation with the isolated word models 
[lo], a value of N = 10 states, with M* = 128 VQ code- 
book symbols, was used for all models. 

Table I11 gives several average statistics of the  test  se- 
quences and  the  DTW  reference  patterns. Included in  the 
table, for each of the six test  talkers, are  the average talk- 
ing rates (in words per minute-wpm) of the test  se- 
quences,  the  speaker dependent (SD) reference  pattern 
rate  (i.e.,  strung  together  in  the  appropriate sequence for 
each test  sentence),  the average speaker independent (SI) 
reference  pattern  rate (i.e., stringing together an average 
length template  for  each word in the  string),  the  ratio of 
rates of the speaker-dependent patterns  to  the  test  pattern, 
and finally, the  ratio of rates of the speaker-independent 
patterns  to  the  test  pattern. Several interesting observa- 
tions can be made from  the  data of  Table 111. First we see 
that  the average talking rate of the  test  utterances was in- 
deed very high, and in fact exceeded 200 wpm for four of 
the six talkers. Next  we see  a high degree of variability in 
the average rate of the SD references  across  the six talk- 
ers.  The synchrony of the  SD  references with the  tests is 
seen in that the  rate ratios for the  SD/TEST  are almost 
constant.  The  rate ratios of the SUTEST are also fairly 
uniform;. howeva, the ratios hover perilously close to 
0.5 (in fact, they fall below it for two of the six talk- 
ers), indicating potential problems due to violations of 
DTW  temporal  constraints. Of course, Table I11 reflects 
only average SI  templates, whereas there is considerable 
variability in the  rate ratios for the  SI  case in using indi- 
vidual SI templates. 

It  is worthwhile contrasting  the  test set used here with 
a previous one used by Myers and Levinson [7]. Myers 
and Levinson (with essentially the  same  sentences) had 
an average rate of about 171 wpm as opposed to  the 210 
wpm average rate here.  Since  the  same  SI  reference pat- 
terns were used in both experiments, we expect (and will 
see  later) that the  performance  here will be somewhat 
poorer than that achieved in  the  earlier study. 

B. Recognition  Experiments 
The test  database (6 talkers X 51 sentences) was run 

on the  HMM/LB  and  the  DTW/LB  recognizers. For the 
DTW/LB we varied only one  condition, namely, whether 
or not the  sentence energy contour was used.  The  DTWI 

TABLE  IV 
(a) RESULTS ON DTW/LB RECOGNIZER FOR BOTH SD AND SI RUNS. (b) 

INDIVIDUAL TALKER  RESULTS FOR DTW/LB SD BEST RUN. (C) INDIVIDUAL 
TALKER RESULTS FOR DTW/LB  BEST RUN. 

NlJMBER OF SENTENCES WITH 
B WORD ERRORS 

TALKER 

1 1  
1 

3 45 
1 2 47 SL 

AR 

9 5 1 1  35 
1 

Jw 
so LR 

7 6 5 4 3 2 1, 0 

LB system was run in both speaker-trained (1 template/ 
word) and speaker-independent (12 templates/word) con- 
ditions. 

For the  HMM/LB recognizer, a  series of runs was made 
to determine  the syllabic rate smoothing parameters of the 
dynamic energy normalization procedure, and then a  se- 
ries of runs were made with variable values of y [see (15)], 
the duration model weighting parameter, and finally, a pair 
of runs was made  to show the effectiveness of the dynamic 
energy normalization procedure. We also performed one 
pair of runs on the  isolated word HMM recognizer on an 
independent  isolated word test set to see if the durational 
model could help the  isolated word case. 

C. Recognition Results-DlW/LB 

The results of running  the  test set through the syntax- 
directed,  DTW/LB recognizer, in both speaker-dependent 
and speaker-independent modes, are given in Table IV(a) . 
Each sentence was scored and the  number of word errors 
(from 0 to  7) was recorded for each talker. Table IV(b) 
and (c) gives breakdowns by individual talker for the 
speaker-dependent and speaker-independent results,  re- 
spectively. In tabulating the number of  word errors in a 
sentence,  insertions were essentially  disregarded in that 
they did not  add  to  the word error  count. However, aZZ 
sentences with insertions did have one  or  more word er- 
rors;  hence,  the  overall  sentence  error  rate is unaffected. 
A word was judged  in  error if it did not appear in the 
recognized sentence in the sequence in  which it was spo- 
ken. 

An analysis of the results given in Table IV shows the 
following: 

1) In the  SD  mode,  the use of energy leads to  a 4.5 
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Fig. 8. Plot of percentage  sentences  correct  versus  duration  weight y, for 
the HMMiLB recognizer. 

percent increase in overall sentence accuracy. It can be 
seen that most of this increase comes from sentences  that, 
without energy, had single word errors. 

2) In  the  SI  mode;'  the use of energy leads to a modest 
1.1 percent  increase in overall sentence accuracy. It can 
be seen  that the percentage of sentences with one or fewer 
word errors is considerably smaller (5.1 percent) for the 
case with energy than without. This is an unusual phe- 
nomenon due to the high propensity of the system to 
change /would like/ to /want/  and,  hence,  incur  a double 
word error in the  sentence. Since the sequence /would like/ 
occurs  nine times out of the 51 sentences, and since the 
energy contours of /would/ followed by /like/ are, in gen- 
eral, grossly different from /would like/ when spoken in 
context,  a  large number of the double word errors in the 
SI case involved this sequence. It should be  noted  that, in 
all such cases,  the recognized sentence was semantically 
correct. 

3) For the four talkers who provided the SD results, 
one talker  performed significantly better  in  the  SI mode 
than in the SD mode,  one  talker was about the same in 
both modes, and two talkers performed significantly bet- 
ter in the SD mode. 

D. Recognition Results-HMM/LB 
The first series of runs varied the probability duration 

model weighting factor y [see (15)] and measured the 
overall sentence recognition accuracy. Results of these 
runs  are shown plotted in Fig. 8. It can be seen that the 
best performance is obtained for a weighting factor of 
y = 3. At this value of y, the  sentence accuracy is 5.9 
percent  higher than for a value of y = 1. Furthermore, the 
performance is 12.8 percent higher than for the case when 
no duration model was used at  all (i.e., y = O)! Hence, 
it should be clear  that, even at the word level, the duration 
model provides a powerful recognition factor for this SJ s- 
tem. 

Because of the power of the word duration model in the 
connected word application, it was also applied directly to 
the  isolated word system for the airlines vocabulary. Fig. 
9 shows a comparison plot of the  error  rate versus the top 
recognition candidates (i.e., whether the  correct word  was 
at  top one candidate, within the  top two candidates,  etc.) 
for the  isolated word HMM recognizer both with and 
without the  duration model. It can be seen that even  in the 

AIRLINES VOCABULARY 

0 -  NO DURATION MODEL 

0 '  I I I I 
0 I 2 3 4 5 6 

TOP R E C O G N I T I O N  CANDIDATES 

Fig. 9. Plots of error  rate  (percent)  versus  number of top  recognition  can- 
didates  for  the isolated word airlines vocabulary  both  with  and  without 
the probability  duration  model. 

TABLE V 
(a) RESULTS ON HMM/LB RECOGNIZER FOR SI RUNS.  (b)  INDIVIDUAL 

TALKER RESULTS FOR HMM/LB  BEST RUN. 

PERCENTAGE OF SENTENCES WITH 
j3 OR FEWER  WORD  ERRORS 

DYNAMIC 
USE 

ERROR 
WORD 

ENERGY 
NORMALIZA'ITON 

6.7 100 100 99.4 97.1 94.4 90.5 86.3 74.9 YES 

9.3 100 99.7 98.7 94.8 91.5 87.9 81.4 66.0 NO 
(%) 0 1 2 3  4 5 6  7 

-RAfL 

TALKER 

AR 

DK 

in word recognition accuracy of about, I percent is ob- 
served for the  top six candidate positions. 

Using the weight of y = 3.0, the next experiment com- 
pared  the  performance of the overall system both with and 
without dynamic energy normalization of the  test sen- 
tences.  The results of this experiment are given in  Table 
V. (Recall  that  here we are discriminating only whether or 
not we dynamically normalize the test energy contour. It 
has been previously shown that energy is  a necessary pa- 
rameter for the airlines system [lo] using HMM's, and 
without it the  sentence  accuracy is on the  order of 5-10 
percent.) It can be seen that the dynamic energy normal- 
ization procedure  increases the sentence accuracy by 8.9 
percent and  decreases  the word error  rate by 2.6 percent. 
These improvements in performance are statistically sig- 

isolated word case,  a modest but consistent improvement nificant at any reasonable level  of significance. 
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NUMBER OF W@RDERRORS,P  

Fig. 10. Plots of percentage of sentences  with /3 or  fewer word errors  ver- 
sus the  number of word errors 0, for the HMM/LB and  the DTW/LB 
systems. 

E. Comparison of DTW/LB and HMM/LB Results 
Fig. 10 shows a plot of the  percentage of sentences with 

6 or fewer word errors  as  a  function of the number of  word 
errors 6 in  the  sentence for the best  DTW/LB SD and SI 
and  HMM/LB  SI  results.  The  curves show virtually iden- 
tical performance for both the  DTW  and  HMM imple- 
mentations in the  SI mode, and a significant performance 
improvement for the  SD implementation. An examination 
of the  results  in Tables IV  and  V shows that  the four talk- 
ers used in the  SD  runs gave  much better  performance, 
on average,  than  the  other two talkers used in  the  SI  runs. 
Thus,  the  difference  in  performance between the SD and 
SI  runs,  as shown in Fig. 10, is not really as  large as 
shown; on the basis of using the  same four talkers in each 
case,  about half the difference in accuracy is accounted 
for. 

F. Some Additional  Analysis Results 

To better  understand  the  performance of the recognizers 
on the  airlines  reservation  task, several additional anal- 
yses of the SI experimental results were made.  One anal- 
ysis tried  to answer the question of  how far away (in a log 
probability sense) were the actually spoken sentences when 
the  system misrecognized the input-i.e., was an  error 
made  because of a poor fit to  the  correct  references, or 
because of a  better  fit  to  incorrect  references.  In  order  to 
gain  this  understanding,  the  HMM/LB and DTW/LB rec- 
ognizers were rerun  on  all  the  test  data, but using a  de- 
generate  syntax  such  that only the actually spoken sen- 
tence was scored.  In  this  manner we could compare  the 
average log probability (or distance) per observation for 
the  incorrect  sentence  versus  that for the actually spoken 
sentence,  and  ascertain how close the  correct  sentence  ac- 
tually was. To quantify these  data, Fig. 11 shows a plot of 
the percentage of the  sentence errors (out of the 77 sen- 
tence  errors  made  from 306 sentences for the HMM/LB 

A (LOG P )  

!O 

Fig. 11. Plot of percentage string errors  within A(log P )  versus A(1og P) 
for the HMMlLB system. 

system) whose correct  sentence  distance was within A(1og 
P )  from  the actually recognized sentence,  as  a function of 
A(1og P ) .  (A similar  curve could be  constructed for the 
DTW/LB system with A(D) scores.)  Since  the average 
log probability per observation ranged from - 3  to -4.5 
for these  sentences, it can be seen that, in general,  the 
vast majority (close to 75 percent) of the  incorrect  sen- 
tences had scores within a very small amount (0.10) of the 
score for the actual sentence.  These  cases  generally  rep- 
resent sentences with a small number of word errors (1- 
3) which had errors in days of the week, digits in a  string, 
/want/ versus /would like/,  etc.  The remaining 15 or so 
sentence  errors (i.e., about 25 percent of them)  represent 
globally bad matches and have average A(1og P )  scores of 
greater than 0.10. 

A second analysis was made of all words whose average 
log probability scores exceeded some  large  threshold.  The 
word  log probability scores were obtained by backtracking 
each sentence, knowing the  correct  string,  and obtaining 
individual word scores  from  the  backtracking.  This anal- 
ysis was done for both the  HMM/LB and DTW/LB SI 
runs. The results of this analysis showed the following: 

1) For the  HMM/LB  system,  the words /TO/, /THE/, 
and /WOULD/ had a  large number of occurrences where 
the average log probability per frame exceeded -5.0. In 
particular, these events occurred 26 times for /TO/, 18 
times for /THE/, and seven times for /WOULD/. 
No other word had more than three  occurrences of large 
scores. throughout the  test. 

2) For the  DTW/LB  system,  the words /I/,  /THE/, 
/TO/, and /WOULD/ had a  large number of occurrences 
where the average frame  distance exceeded 1.0. In partic- 
ular, these events occurred 28 times for /I/. 26 times for 

_ _  /THE/, 22 times for /TO/, and seven times for /WOULD/. 
I ~ ~ - - -  
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No other word  had more than four occurrences for large 
distances throughout the test. 

The  degree of overlap of these poorly performing words 
emphasizes a major problem with the recognizer-namely, 
that the word models (templates) were derived entirely 
from isolated word tokens. For content words such as 
/LOS-ANGELES/ or /RESERVATION/, there is  very little 
problem  using isolated word  tokens for recognition of these 
words ic context; for highly variable function words such 
as /TO/,  /THE/,  /WOULD/,  etc., the context often 
changes the words significantly, so that the isolated word 
models are totally inappropriate. Perhaps the major rea- 
son why the  entire recognition system performs as well as 
it does is because there  are many content words, and as 
long as those are properly recognized,  the system is quite 
forgiving of gross misfits on the function words. 

IV. DISCUSSION AND SUMMARY 

The results presented in the previous section show that 
the  HMM/LB implementation of the airlines reservation 
and information system performs comparably to the  DTW/ 
LB implementation of the  same system in the SI modes. 
This result is somewhat remarkable for two reasons, 
namely: 

1) the  HMM/LB system undergoes fairly severe distor- 
tion in using a VQ to provide  the  discrete observation se- 
quence-the DTW/LB has no such quantization distortion 

2) the  HMM/LB system requires an order of magnitude 
less computation than the  DTW/LB  system. 

The comparable performance of the two systems was 
shown to be related to  the use of a robust, heuristic word 
duration probability model in the LB implementation, and 
to the use of a dynamic energy normalization algorithm 
which served to highlight content words in  the  string. 

The  error analysis indicated two problems with the sys- 
tem.  First,  there  are severe problems  with the word  models 
for some of the highly variable function words in the vo- 
cabulary. Second, there are some fine analysis problems 
in resolving close-sounding words-e.g., days of the week. 
The solution to both these problems is straightforward. 
The only proper way to  train  a  connected word recognizer 
is from word tokens derived from connected word se- 
quences spoken directly to the recognition system.  These 
connected word sequences can then be used to help train 
the system to properly recognize embedded word tokens. 

A second potential system improvement, for the  HMM/ 
LB system, is to eliminate VQ from the system, i.e., to 
use continuous distributions, rather than discrete symbols 
in the  HMM’s.  Preliminary investigations indicate that 
this is indeed a viable possibility and one that must be 
considered in future  research.  The durational model is also 
amenable to refinement by the use of variable duration 
HMM’s [25] .  

Work at IBM [26] has indeed been using all  three pro- 
posed system refinements and has achieved excellent re- 
sults on a wide-band speech, single-talker system with a 

r 101; 

vocabulary of 250 words. However,  it remains to  be seen 
how the  degradations of telephone quality speech and the 
need for speaker  independence will affect the resulting 
system performance on the  task studied by the IBM re- 
searchers. 

In summary, we  have shown that a fairly reliable, syn- 
tax-directed,  connected word recognition system with a 
medium-size vocabulary can be efficiently implemented 
using HMM’s and the LB algorithm. 
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