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Abstract-In this paper a signal modeling technique based upon finite 
mixture autoregressive probabilistic functions of Markov chains is de- 
veloped and applied to the problem of speech recognition, particularly 
speaker-independent recognition of isolated digits. Two types of mix- 
ture probability densities are investigated: finite mixtures of Gaussian 
autoregressive densities (GAM) and nearest-neighbor partitioned finite 
mixtures of Gaussian autoregressive densities (PGAM). In the former 
(GAM), the observation density in each Markov state is simply a (sto- 
chastically constrained) weighted sum of Gaussian autoregressive den- 
sities, while in the latter (PGAM)  it  involves nearest-neighbor decoding 
which  in effect, defines a set of partitions on the observation space. In 
this paper we discuss the signal modeling methodology and give exper- 
imental results on speaker independent recognition of isolated digits. 
We also discuss the potential use of the modeling technique for other 
applications. 

S 
I. INTRODUCTION 

IGNAL  modeling  based upon hidden Markov models 
(HMM’s) may be viewed as  an effective technique  that 

extends conventional stationary spectral analysis princi- 
ples to  the analysis of time-varying  signals [ 11-[2]. It uses 
a Markov chain to model the  changing  statistical charac- 
teristics  that  are only probabilistically manifested  through 
the actual  observations. Therefore, a hidden Markov pro- 
cess  is a doubly stochastic process in  which there is an 
unobservable Markov chain,  each  state of  which is asso- 
ciated with a probabilistic function, characterized by a 
probability distribution or a density function. The Markov 
chain is defined by a state transition matrix, while the 
probabilistic functions,  designated  as  the observation 
probabilities or  densities, may be nonparametric or pa- 
rametric  representations. 

The primary concern  in  the hidden Markov modeling 
technique is the estimation of model parameters  from ob- 
served  sequences. A reestimation  algorithm due  to Baum 
and Eagon [3] is usually used  for this purpose. The algo- 
rithm was first  proposed  in 1967 by Baum and Eagon for 
the estimation problem of HMM’s with discrete observa- 
tion densities  (probability  mass  functions). Baum et al. [4] 
later extended  the algorithm to continuous density HMM’s 
with  some  limitations. In their work, they required  that 
the  density  functions  be  strictly log concave. This require- 
ment was relaxed by Liporace [5] who, by invoking a rep- 
resentation  theorem due to Fan [6], successfully  accom- 
modated a broad class of elliptically symmetric density 
functions so that problematic densities,  such  as Cauchy, in 
the original development of [4] could be dealt  with.  Re- 
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cently, Juang et al. [7]  further expanded the estimation 
algorithm to cope with  finite  mixtures of strictly log con- 
cave and/or elliptically symmetric density functions.  Since 
Gaussian mixture densities can  be used to  approximate 
any  continuous probability density  function (in the sense 
of minimizing the usual Lk error between  two density 
functions) [SI, the modeling  capability of hidden Markov 
processes has thus  been  greatly enhanced. 

In this paper, we concentrate primarily on mixtures of 
Gaussian  autoregressive  densities which are the  bases in 
the maximum  likelihood  formulation of the ubiquitous lin- 
ear prediction analysis [l],  [2], [9]. Poritz was the first 
person to show how the ideas of linear prediction analysis 
could be welded into  the hidden Markov model method- 
ology [ l ] .  However,  in his  work,  Poritz only considered a 
single Gaussian  autoregressive density per  state.  Our work 
extends this initial work to  the  case of a mixture of Gauss- 
ian autoregressive  densities,  retaining the theoretically 
consistent  formulation of the problem proposed by Poritz. 

We consider  two  types of mixture densities  in this paper. 
The first type is simply a finite  mixture of Gaussian  au- 
toregressive  densities,  denoted as GAM (Gaussian auto- 
regressive mixture) for brevity, which allows straightfor- 
ward maximum  likelihood  estimation  based  on the  results 
in [ l ] ,  [2],  and  [7].  The second  type is a finite  mixture of 
Gaussian  autoregressive  densities  with  nearest-neighbor 
decoding,  denoted  as PGAM (P for Partitioned). In this 
type of mixture density, the  vector  space is implicitly par- 
titioned  into regions,  Each region  is defined by a Gaussian 
autoregressive density. To evaluate  the pdf for a point  in 
the measure space, the appropriate region to which the 
point belongs is  first  found by a nearest-neighbor crite- 
rion.  As  will be explained  later,  this resembles a vector 
quantization operation  in source  coding.  One such exam- 
ple is  the  finite-state  vector  quantizer  (FSVQ)  as  discussed 
by Dunham et al. [22].  The goal is to further  link the 
vector  quantization  technique for source  coding to a su- 
perstructure, namely a Markov chain, so as to exploit the 
nonmemoryless nature of speech  signals.  The difference 
between  FSVQ  and  PGAM  hidden Markov model is rather 
subtle in that the FSVQ  implies  instantaneous  decoding of 
the state sequence  pertaining to the Markov chain while a 
PGAM hidden Markov model treats each state sequence 
as one probabilistic  component in evaluating the likeli- 
hood of the observation  sequence. 

The  paper is organized as follows. In Section 11,  we re- 
view the mathematical  formulation of the problem and  de- 
velop a reestimation  algorithm for the mixture density 
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modeling  technique.  Then,  in  Section 111, we discuss  the  particular  vector x. There  is  thus  a built-in  classification 
way in which the model estimation  procedure was imple-  rule  that  implies  a  partition on 6 i K .  Let Q,m, m = 1, 2, 
mented.  In  Section IV we report  the  results of our  speaker * * , M be  the  partitioned  regions. In each  region Qjm,  

independent  isolated  digit  recognition  experiments  with  every x E Qjm has 
the  technique. We then  summarize  our  findings  and  dis- 
cuss  other  potential  applications. C;m b;m (x) 2 c;l b;/ (x) 

11. MIXTURE  AUTOREGRESSIVE  HIDDEN 
MARKOV  MODELS 

We consider  an  N-state  homogeneous Markov chain with 
state  transition  matrix A = [aij],  i, j = 1, 2, - * , N. 
Associated  with  each s ta te j  of the  unobservable Markov 
chain  is  a  probability  density  function bi(x)  of the ob- 
served  K-dimensional  random  vector x’ = [xo, x1 , * - - , 
xK- ( K  consecutive  samples of the speech  signal). We 
will  use  the  notation bj to denote  the  parameters defining 
bj(x) .  Also  let 0 be  the  observed  sequence, 0 = (ol, 02, 

each of is  an  observed  vector x. The probability  density 
function  for 0 in  the 7’-fold Cartesian  product of the K- 
dimensional  vector space, 3; = % K  X w X X 3 k ,  

is then 

. . .  , oT), where T is  the  duration of the  sequence  and 

In ( l ) ,  we use X to  denote  the hidden Markov model, X = 
(T, A ,  B )  where T is the  initial state probability  vector, A 
is the  transition matrix, and B is  the  set of parameters 
defining { b j ( x ) } ,  j = 1, 2, - * , N. S is  a  state  sequence, 
S = (so, s i ,  - , st ) ,  s t  E (1 ,  2, * * , N ) ,  and  the  sum- 
mation  is  over  all possible state  sequences S. 

In  GAM,  the  observation  density bj (x), for j = 1, 2, 
. . .  , N,  has  the  form 

M - 
GAM: bj (x) = x cjmbjm (X) 

m =  I 

for  all I # m. The stochastic  constraint  becomes 

P M I- 

The  constraint on cjm that  results  from ( 5 )  is discussed 
below. 

Parameters of the  model to  be  estimated  therefore  in- 
clude: 1) the  transition  matrix [au] ,   i ,  j = 1, 2, * - * , N; 
2)  the  mixture  weight  (for GAM) [ c j m ] ,  j =  1, 2, * , N 
and m = 1, 2, * * , M ;  and 3 )  all  necessary  parameters 
defining  the  set of basis  probability  densities {bjm (x) 1, 
j = 1 , 2 ; . * , N a n d m = 1 , 2 ; . . , M . A s w i l l b e s h o w n  
shortly, the stochastic  constraints  on  the  transition  prob- 
abilities,  i.e., E,”= I aij = 1, as well as  the  mixture  weights 
as  required  in ( 3 )  for  the GAM case  can be automatically 
satisfied in the  reestimation  algorithm. To satisfy the  re- 
quirement of ( 5 )  for  PGAM,  nevertheless,  is not a  trivial 
task  during  reestimation  where  an  increase  in  likelihood 
after each  iteration  must  be  maintained. We therefore  use 
a  simplified  expression  for bj(x)  in  the PGAM case 

1 
M ~ = I , ~ , . . . , M  

PGAM: bj(x) = - max bjm(x). (6) 

Note  that  the  use of (6) excludes  the  mixture  weights  as 
the model parameters  since cjm = 1/M for all j and m is 
implied.  In  addition, we assume  that 

n 

where M is the number of mixture  components, cjm is  the 
weight  for  the mth  mixture  component,  and the  double-  for  the  constraint of ( 5 )  to be approximately  satisfied.  Ex- 

function  for  the mth mlxture  component,  all  related to state ues Of and chosen in this study* 
j .  The  mixture weight cjm must satisfy  the  stochastic  con- 
straint 

subscripted  function b. (x) is the  basis  probability  density  perimentally, we found  this  to  be the  case for  typical 
J” 

A. Gaussian  Autoregressive  Densities 

for  the  observation  vectors  is  Gaussian  autoregressive  as 
M We assume  that  the  basis  probability  density  function c Cjm = 1, j = 1, 2, * , N  

m = I (3) discussed  earlier. We also  assume  the  order of autoregres- 

so that 
P M I- 

b,(x) dx = cjm bjm (X) dx = 1 .  
m = l  J W K  

sion  to  be p ,  so that x has  the  relationship 
n 

where ek,  k = 0, 1, 2, * * , K - 1 are Gaussian i.i.d. 

ai, i = I, 2, * - , p ,  are the  autoregression  coefficients 
In On the Other hand? the Observation density random  variables  with mean and  unity  variance  and 

b,(x) assumes  the  form 

PGAM: bj(x) = max cjm bjm (x). (4) or  predictor  coefficients.  It  can  be  shown [2] ,  [9] that for 
m = l , 2 ; . . , M  large K,  the  density  function  for x is  approximately 

It  is  clear  that,  in  PGAM, only the most likely  mixture 
component  is  chosen as  the  observation  density  for  each f ( x )  = ( 2 ~ > - ~ ~  exp { -  $6(x; a>> (8) 



IEEE  TRANSACTIONS  ON  ACOUSTICS, SPEECH,  AND  SIGNAL  PROCESSING, VOL. ASSP-33,  NO. 6, DECEMBER 1985 1406 

where 
P 

&(x; a) = ~ J O )  r ( ~ )  + 2 C r, ( i )  r ( i ) ,  (9) 
i =  1 

a' = [ I ,  a , ,  a2,  * - > 4 1  
p - i  

ra( i )  anan + i  with a, = 1 (10) 
n=O 

and 
k - i - l  

r ( i )  = C x,x,z+i. G (11) 
n=O 

Note that the assumption E {e:> = 1 implies  that  the ob- 
servation  vector x has already  been  properly  scaled. (In 
LPC analysis terminology,  this  is equivalent to normali- 
zation by the square  root of the average residual energy; 
i.e., if a frame of speech samples has 0' as the average 
LPC residual energy per sample,  then xi is the ith speech 
sample value in the  frame  divided by 0.) To use  unscaled 
speech samples as  the  observations, a corresponding den- 
sity function  can  be easily derived [ 1 ], [2]. Also note  that 
r,'s are  the autocorrelation of the autoregressive coeffi- 
cients  and r's are  the autocorrelation of the  (normalized) 
observation  samples.  Maximum  likelihood  estimation of 
the  autoregressive coefficients from x requires  minimiza- 
tion of 6(x; a), a procedure equivalent to the  autocorrela- 
tion method in linear  prediction  analysis. 

We use (8) as  the basis density  function,  since  the  ap- 
proximation does not pose  any difficulty. Each basis den- 
sity is thus defined by an autoregression  vector a or equiv- 
alently an autocorrelation  vector r, = [r,(O) r , ( l )  * 

r o ( p ) ] ' .  Using appropriate subscripts, we have 

bjm (x) = ( 2 ~ )  p K n  exp { - t 6(x; aj,,,)>, (12) 

where ajm is clearly the parameter vector defining the  den- 
sity for the mth mixture component  in state j .  

B. Reestimation  Transformation 
We do not intend to provide a full development of the 

reestimation  algorithm here.  Instead, we refer to  [2],  [4], 
[ 5 ] ,  and  [7] for the algorithm  and its convergence proof. 
For  self-completeness, however,  we summarize  the algo- 
rithm as follows. 

For a given observation 0, the reestimation  algorithm 
starts with an  initial  guess of the model X. A transforma- 
tion that maps the  parameter  space into itself is then ob- 
tained based upon X. The transformation leads to new 
model x which has f ( O ( x )  > f ( O ( X )  unless h is a fixed 
point  of the transformation. The procedure is iterated after 
replacing the old model with  the new model,  and  stops 
when a fixed point, which corresponds to a critical point 
of f(OlX), is reached.  The procedure guarantees  an  in- 
crease  in likelihood after  each  iteration and will converge 
to a local optimum, when proper densities,  such as those 
outlined in [7] or those under  current consideration, are 
used. 

Most of the  theoretical  results presented here follows 
the treatment  in [2] and [7] and we shall  present  them 
without extensive explanation. The estimation is based 
upon multiple observation  sequences. We denote these se- 
quences  as 0('), 1 = 1,  2, . e a , L where L is the total 
number of sequences.  Each  sequence 0(') = (o? ) ,  of), 

* , oflo) is of duration T('). We also use S(')  to designate 
the  unobservable  stochastic state sequence  corresponding 
to the  observation 0"); S'" = (s sj'), * * , sFjo). The 
new model, after  transformation, is denoted as = (T ,  
A ,  B )  where2 = [aq], i , j  = 1 ,  2, . , N ,  and B consists 
of [ai,] and = Ejm], j  = 1, 2, * * . , N , m  = 1,2 ,  e - - ,  

M for the GAM case. (We shall  skip discussion on ?T as it 
is of no interest  in  the  current  situation.) For the PGAM 
case based upon (6), c is not part of the parameter set and 
hence not subject to estimation. 

The transformation of the transition probability, azj,  is 
straightforward  and is applicable for both GAM and PGAM 
cases.  In  particular, 

- _  

L T(0 

C C f(o"', s;? I = i ,  sj"= j l ~ > l f ( ~ ( ' ) l ~ )  

C C f ( ~ ' " ,  s:'ll = ilX)/f(O'"lX) 

We usef( a )  to  denote generically the density or likelihood 
function  without ambiguity. The quantity f ( 0 ( " ,  s!?, = 
i ,  s;" = j lh) is  the probability density evaluated for the 
case of observing 0(') with a transition  from state i at time 
t - 1 to  state j at  time t ,  given  the current model param- 
eter set A. Equation (13) has an  intuitive  interpretation of 
simply being the fractional  transition  count  from state i to 
state j averaged over all  sequences. 

The  mixture weight transformation, cjm, as needed in 
the GAM case,  is  also relatively straightforward. How- 
ever, we need to  introduce another set of stochastic  pro- 
cesses, @), I = 1, 2, * * * , L ,  to designate  the  mixture 
component; H(')  = (h?, hi'', * * , h$,)). For convenience, 
we shall  call H'" a branch  sequence.  Each  hjl) E { 1, 2, 

which the  observation 01') is  drawn  from  mixture  compo- ' 

nent (branch) hi'). The  quantityf(O('), s? = j ,  hj" = mlX) 
is  then the probability density evaluated for the case of 
observing 0'') with 0:') being  drawn  from  the  mixture 
component defined by bj,n( .), of s ta te j  at time t ,  given X. 
The  mixture weight transformation can now be stated as 

- a,. = 
11 

1 = 1  f = l  
L TO) ' (13) 

! = I  1 = 1  

. . .  , M )  is a random variable and  represents an event  in 

1, TO) 

C f (O ' " ,  s ; l )  = j ,  hj" = m(X)/f(O"'IX) 
- 
Cjrn - L T(') 

- 1 = 1  r = l  

C C f ( ~ ' " ,  si') = .jlX>/f(O"'Ix) 
/ = I  t = l  

(14) 

It should be noted  that  the  stochastic  constraint of (3) is 
automatically satisfied in the reestimation  transformation. 

The transformation of autoregression coefficient vec- 
tors, i$,, for each component involves the observation au- 
tocorrelation  and  the  linear prediction minimization pro- 
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cedure  mentioned  in  Section 11-A. Denoting  the  autocor- 
relation  coefficients of observation  vector 0: ' )  by rf '  ( *), 
l.e., 

O;') = [#b o(l' . . . o(') ' 
I ,  I r ,K-  1 1  

and 
K -  1 - i  

we then have a new set of autocorrelation  parameters Fjm 
for  each  mixture  component rn in  each  state j 

yjm (i ) 
L T( f )  

C C f ( ~ ( ' ) ,  s;') = j ,  hj" = r n l ~ )  rj"(i>~f(O"'lX> 
- 1 = 1  f=l - L T(0 

(16) 

. .  . , M .  It  is  seen  that Fjm(i) is a  normalized  accumulative 
for i = 0, 1, 2, * , p , j = 1 , 2 ; . - , N , a n d r n = 1 , 2 ,  

autocorrelation  with  each  summation term properly 
weighted by its  probability of occurrence, From T m ( i ) ,  
i = 0 ,  1 , 2 ,  , p ,  one  can  solve  a  set of normal  equa- 
tions  and  obtain the corresponding  autoregressive coeffi- 
cient  vector [IO] which is  exactly  the  required Sjm vector 
in the  Gaussian  autoregressive  density  for  the mth mixture 
component  in  the jth  state.  The new autocorrelation  vec- 
tors of the  autoregression  coefficients  can  then be easily 
calculated using (10). 

Equation (16) is  explicit  for  the GAM case. For the 
PGAM case, where  a  nearest  neighbor  partitioning is in- 
volved, the  reestimation  transformation  of  the  autocorre- 
lation  coefficients  slightly  differs  from (16). Particularly, 
for PGAM, 

yjm (i 1 
L Tin 

C C f ( ~ ' " ,  s f '  = ~ I x )  * r; ' ) ( i )  * q j m ( o f ) > / f ( ~ ( ' ) I ~ >  
- - 1 = 1  t = l  

(17) 

where qjm (0,) is  a  nearest  neighbor  function  defined  as r 1, if bjm(ot) = max bjj (03 

0,  otherwise 
qjm (0,) = i =  1.2, ' ' ' ,M (18) 

Therefore, in PGAM,  only  those  autocorrelation  vectors 
in the  correct  region  are  averaged,  and  each  individual 
region is an  independent  entity. After the new set of au- 
tocorrelation  vectors are  obtained, the  rest of the  proce- 
dure  remains  the  same as GAM. 

It should be  noted  that  the  positive  definiteness of the 
autocorrelation  matrix is maintained  in  the  reestimation 
transformation  and  thus  a  stable  solution  to  the  normal 
equations is guaranteed. 

C. Forward Probabilities,  Backward  Probabilities,  and 
Numerical  Considerations 

The  computational  complexity of the  reestimation  al- 
gorithm is significantly  reduced by using  the  forward  and 
backward  likelihood (or probability)  [4]. We shall drop  the 
superscript  for  the  sequence  number  for  simplicity.  The 
forward  likelihood a , ( i )  is  defined  as 

a t ( j )  ' f (O1,  9 7  * * * > Ot, st = j l X )  
N 

= a,- ( i )   a i jb j (o f ) ,  (19) 
i =  1 

with ao( j )  = rj, and  the  backward  likelihood  is 

P t ( j )  A f ( o f + l ,  Ot+27 ' * 9 OTIS, = j ,  X) (20) 
N 

= Pr+ I ( i )  ajibi(Ot+ 1). 
i = l  

with p T ( j )  = 1 for  all j .  
The recursive  nature of at ( j )  and 0, ( j )  implies  a  trellis 

structure which is  the key to computation  reduction [ 111. 
Many quantities  required  in  the  reestimation  transforma- 
tion can  be  easily  expressed  in terms of at( i) and /3, (i). 
In particular, 

f(Oy S t - l  = i ,  st = j ( h )  = ol,-Iti>aijbj(Or)Prtj>, 
(23) 

f(O, Sf = j ,  h, = r n / N  (24) 

= at- I ( i )  aeCjmbjm(or) P r ( j > .  

and 

N 

i =  I 

These  quantities are usually  very  small  and  a  scaling 
scheme  is  required  to  prevent  underflow  problems. We use 
essentially  the  same  scaling  scheme  as in [ I 1 1  but write 
each term explicitly  for  ease of computer  programming. 
Let 

N N  

+T = C C o l ~ - l ( i ) a i j ~ j ( 0 7 ) ,  (25) 
i = l  j = l  

and 

7 =  1 
. ,  

Similarly, we scale &t i )  by 

+ T  
7 = r +  1 
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Clearly, 
A' . N  

and  hence 
T N 

since Cy= ao( j )  = 1. Then, 

Similarly, 

and 

It  is  understood  that (24) and (31) are explicit for the GAM 
case. For the PGAM case, incorporation of the  nearest 
neighbor  function qjm as defined in  (18)  is necessary. This 
scaling  scheme effectively prevents the underflow and ov- 
erflow problems that  often  arise  in the  reestimation algo- 
rithm. Also,  the  scaling  constant  in (12) is usually omitted 
as  it has  no effect on  the transformation  equations. 

111. IMPLEMENTATION OF THE MODEL 
ESTIMATION PROCEDURE 

The  procedure for  estimating  the HMM model param- 
eters, outlined  in  Section 11, has been shown to be very 
sensitive to  initial  estimates of several of the model pa- 
rameters  [12], [13]. A crucial prerequisite of the  entire 
estimation procedure  is a reliable and  meaningful method 
for initialization.  Obtaining  such reliable initial  estimates 
is often nontrivial  since they are strongly affected by the 
prescribed Markov chain constraints. For left-to-right 
Markov models which  have been  shown to be extremely 
useful in  speech  modeling, a modified training  procedure 
was developed in  which very good initial  estimates of 
model parameters were  obtained via a segmental k-means 
procedure,  and then the formal reestimation algorithm was 
used as a model refinement tool [13]. (A segmental k- 
means procedure is a k-means clustering  procedure  op- 
erated over properly  selected  segments of the  training 
sequence.) A block diagram of this modified training  pro- 
cedure is given  in  Fig. 1. An initial model X is assumed. 
This initial model can  be chosen via a variety of proce- 
dures  including  random  initial  guesses of model parame- 

I N l T l A L I Z A T I O N  
MODEL 

X 

I I I 
STATE  SEQUENCE 

SEGMENTATION ~ 

I 
ESTIMATE  PARAMETERS 

* OF B ( o )  

K -MEANS 
VIA 

x 

MODEL 
REESTIMATION 

Fig. 1. Block diagram of model training procedure. 

ters (subject to the  required  stochastic  constraints). Based 
on the  initial  model,  each of a set of L training  sequences 
is segmented  into  the  maximum likelihood state sequence 
(via a Viterbi  decoding  procedure [ 141). For  each state of 
the  model, a k-means procedure, specifically the LPC 
vector  quantizer design algorithm [ 171, clusters all the ob- 
servation  vectors  within  that state  into a set of M clusters, 
based  on a nearest  neighbor classifier, using the  distance 
measure of (9). Based on  the  vectors  within  each  cluster, 
the  initial  estimates of the parameters of B are given as 

number of vectors in cluster m, state j 
number of vectors  in state j 

cjm = 

iijm = LPC vector corresponding to the  centroid 
(of the normalized autocorrelation) of cluster 
m,state j .  

The  transition  coefficients, aU, are not  modified  in the  seg- 
mental k-means prcedure. The new model = (T ,  A ,  fl) 
is  used as  the  initial  estimate for the model reestimation 
algorithm which leads to a new x. A check  on model con- 
vergence, in  which the new model, x, is  compared to the 
previous  model, h, is used to determine if the model es- 
timation  has  converged. The way in which convergence is 
determined is to  generate, via  Monte  Carlo  methods, a 
set of observation  sequences, 0, from the new model, x, 
and  then to calculate  the log likelihoods of 0 given both 
the old and new models [ 151.  If the  difference in the log 
likelihoods  (normalized by the total number of observa- 
tions in 0) is  sufficiently small, then model convergence 
is  assumed. If  no convergence is obtained, a new iteration 
of the training  procedure  is carried  out with h = x. Prac- 
tically  we  have found that rapid convergence is obtained 

In the following, we shall  describe an example that dem- 
onstrates the effectiveness of the above estimation  proce- 
dure, particularly for discrete speech  utterances such as 
isolated digits.  Our presentation  focuses on left-to-right 
models [ 1 I], but the methodology can  be easily extended 
to general cases. 

A .  An Example 
To illustrate  the  use of the  training  procedure we used 

the following training data. For a vocabulary of 10 words 
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STATE STATE 

Fig. 2. Average LPC distance  scores  versus  state  number for each  digit  and 
model for the GAM mixture  density  models. 

(the  digits),  the  training  procedure of Fig. 1 was used on 
two independent  sets of training  data with about 50 train- 
ing  sequences  (from 50 different  talkers)  per set, where 
each  training  sequence  consisted of about 40 frames of 
LPC vectors.  Thus  a  total of about 2000 observations 
(frames of LPC  vectors)  were  available for the  segmental 
k-means  algorithm.  The  initial  model, for each  training 
set, was a  previous  model  based on a  cepstral  represen- 
tation of the  signal [13] so the initial state sequence  seg- 
mentation was already  a very good reflection of the  time- 
varying  statistical  characteristics  present in the  se- 
quences. 

The  target  model  was  a 5 state  left  to  right  HMM [ll] 
with  a 5 term  mixture autoregressive  density  in  each  state 
for  each  set  of  training  sequences (i.e., two independent 
models  were  created  for  each  word). The  distance mea- 
sure was the  distance of (9). After model  convergence  the 
average  distance of the  state-segmented  observation 
(training)  sequence, in each state of each  model, was 
monitored  and  a plot of these  average  distances, for the 
GAM case, is  given  in  Fig. 2 for  each of the 10 digits.  The 
two curves, for  each digit, represent  results  for  the two 
models  created  from  the  training  data.  Although  there is 
a  fairly  broad  range of average  distance  scores  (from  a low 
of 0.14 to  a  high of 0.50), a  general  trend  to  having  higher 
distance  scores  for  the  last  state  than  for  earlier  states  is 
seen.  This  is  due  to  both  the  broader  range of sounds  that 
occur  at  the  ends of isolated  words  than  at  other  points 
within  the  word,  and  the  fact that, in  left-to-right  models, 
the  probability of staying  in  any state, except  the  last, is 
inherently  an  exponentially  decreasing functiokof the  du- 
ration  (recall  that aji < 1 for i # 5 in  the  current 5 state 
model).  It  can  also be seen  from  Fig. 2 that  the  average 
distances  for  the two independent  models  for  each word 
are reasonably  close  for  all  states  and for most of the 
words.  This  result  can be attributed to  the  close  linking, 
for isolated  words,  between  states  and  specific  sounds 
(phonemes,  syllables, etc.) in the word. 

The model reestimation  procedure was used with the 
initial  (unsegmented)  training  sequences and the model 
obtained  from  the  segmental  k-means  procedure.  Again 
we monitored the average model distance  for  the  entire 
training  set.  The  model  reestimation  procedure  often  con- 
verged  rapidly  and  produced only a  slight  change in the 
average  distance  score  from  that  provided by the model 
obtained  from  the  segmental  k-means  algorithm. In other 
words,  the  segmental  k-means  algorithm was capable of 
providing  a  model with essentially  the  same  likelihood as 
the  one  provided by the  reestimation  procedure  for  speech 
signals. 

This  result  has  the following significance even though 
its  scope  is  limited by the  fact  that  left-to-right  models 
were  used.  First,  speech  signals,  often  considered  as 
quasi-stationary  processes, do manifest sequentially 
changing  characteristics  and  each  short  term  snapshot of 
the  signal  can  be effectively analyzed by such  methods as 
autoregression.  The  sequential  nature of the  characteristic 
changes of speech, however, can be adequately  repre- 
sented by simple segment  registration (which cuts  a  speech 
utterance  into  a  required  number of segments  and  then 
registers  each  segment  as  a  state).  This  segmental  nature 
may not  require  sophisticated  stochastic  modeling  partic- 
ularly when the  signal  under  analysis  has  rather well de- 
fined starting  and  ending  characteristics  like  isolated  dig- 
its.  Second,  the  reestimation  transformation  outlined 
above  does  guarantee  a  local  optimum  and  the  use of the 
segmental  k-means  algorithm  leads to  a meaningful model 
reestimate of speech  signals. 

Although  the  results  given  in  Fig. 2 are for  the GAM 
representation,  essentially  identical  results  were  obtained 
for the PGAM representation. 

B. Incorporation of Model State Duration  and Log 
Energy  Estimates 

For  speech  recognition  applications,  it  is  often  desirable 
to  incorporate  state  duration  and  energy  information  in  the 
model.  Based on the  final  segmentation of the  training ob- 
servation  sequences  into states, histograms of the  average 
state  duration and average log energy  were  measured  as 
follows.  For  the state duration  histograms,  the  length of 
time 1 spent  in state j was  determined  for  each  training 
sequence  and  for  each  state. The  state duration  probability 
was defined as 

pj(LIT) = probability of being in state j for exactly 
(LIT) of the  sequence,  where T 
is the  number  of  observations  in  the  sequence. 

For each  word,  model,  and state,  the quantity p j ( l / T )  was 
estimated (via a  simple  counting  procedure on the  training 
data)  for 25 values of LIT from 0 to 1.0. It  is  important to 
note  that  this  is  a  particular  implementation  for  the  left- 
to-right model in which right-to-left  paths are disallowed. 
For  general model implementation,  the  length  normaliza- 
tion by T is not necessary  and L should be  interpreted  as 
the  length of consecutive state  segments. 
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In a  similar  manner,  histograms of log energy  for  each 
state of each model were  estimated  from  the  training  data 
in the following way. The log energy  contour for each 
training  sequence was normalized to a 0 dB peak  and  in- 
dividual frame log energies  were  quantized  into 3 dB  wide 
bins (i.e., a 75 dB dynamic  range). The log energy  prob- 
ability was then defined as 

wj(E) = probability of being  in state j and having a  quan- 
tized log energy value  of E .  

For  each  word,  model,  and  state,  the  quantity wj(E) was 
estimated  via  a simple counting  procedure  on  the  training 
data. 

Calculation of the likelihood  thus involves evaluation of 
the following equivalent  distance  (besides  looking up the 
state transition  probability matrix) 

d ( x ,  UT, E ;  a i m ,  p j ,  w,) = K - 6(x; a;,) - 1 
A [; I 
- log pj( l /T)  - Y E  log Wj( (E)  

T 
(32) 

where k is  the effective  length of each  data vector, LIT is 
the  fraction of the word spent in statej  accumulated up  to 
the  observation of x, E is  the quantized log energy of the 
current  frame, and yo and y E  are experimentally deter- 
mined positive scaling  constants  for  the log probabilities 
of the  duration  and  the log energy respectively. 

The effective length K needs  further  explanation.  Speech 
signal  analysis  is  generally  performed on frames of K sam- 
ples,  with  consecutive  frames  being  taken after a  shift of 
KT samples. A speech  signal of LT samples  is  hence  seg- 
mented  into LTIK, frames.  These  frames  are overlapped if 
the analysis frame size K satisfies K > K,. Then, x is used 
to  represent K samples of the  speech  signal  and [S(x; aim>/ 
K ]  - 1 becomes  the well known likelihood  ratio  distortlon 
measure. If we denote this  quantity by dLR(x; aj,)  (12) 
becomes 

bjm(x) = (2x1- ''* exp (- ~ / 2 )  exp - - d L R  (X; a,,) . il: 1 
(33) 

It is  therefore  clear  that L ~ [ , ~ ( x ,  aj,) can  be  regarded as  the 
average  cross  entropy [16] per sample between  the ob- 
served  vector x and  an autoregressive  source  character- 
ized by ajm. Using { x i >  and (ai>, i = 1, 2, . . . , LTIK,, 
to  denote  the LTIK,$ frames of speech  data  and  the  se- 
quence of autoregressive  sources  for  comparison  respec- 
tive].~,  we  note that  the  cross  entropy  between { x i >  and 
(a,], with a  memoryless  vector  source  assumption, is 

K, c dLR(xi; ai> = K, c [F 6(x,; ai) - 11 (34) 

if the  original  time  scale of the  speech  samples  is  to  be 
maintained,  independent of the  analysis  length K .  This  be- 
comes  more  crucial when an  underlying Markov chain, 

L K T  LdKv 1 
i = l  i =  1 

instead of a  memoryless  source, is  assumed,  since  the 
transition  structure  contributes to the  cross  entropy. K in 
(32) thus  allows  adjustment on the relative cross  entropy 
contributions  between  spectral  parameters  and  the  Mar- 
kov chain.  The  relative  rate of information in the model 
contributed by spectral,  durational,  and  energy  parame- 
ters, respectively,  can  therefore be  adjusted by the  three 
scaling  factors, k, yo, and YE. 

IV. ISOLATED DIGIT RECOGNITION EXPERIMENTS 
One  direct  application of the above  modeling/estimation 

technique  is  in  isolated  digit  recognition. A framework of 
such an application  can be found in [I1 1. 

To evaluate the  performance of the  HMM  recognizer 
with the GAM and PGAM mixture  densities,  a  series of 
experiments was run using a  database of isolated  digits 
recorded  over  standard  dialed-up  telephone  lines. Four sets 
of spoken  digits  were  used.  These  consisted of the follow- 
ing: 

DIG 1-100 talkers (50 male, 50 female), 1 replication 
of each  digit by each  talker [ 181. The nominal  bandwidth 
of these  recordings was 100-3200 Hz. 

DIG 2-Same 100 talkers  and  recording  conditions  as 
DIG 1 ; recordings  made  several weeks after those of 
DIG 1. 

DIG 3-100 new talkers (50 male, 50 female), I aver- 
aged  occurrence of each  digit by each  talker  obtained  from 
averaging  a  pair of  robust tokens of the  digit [19], [20]. 
The  transmission  conditions (i.e., analog front  end,  filter 
cutoff frequencies,  etc.)  digered slightly  from  those  used 
in recording  the DIG1 and  DIG2  databases. 

DIG 4-A second group of 100 new talkers (50 male, 
50 female), 20 recordings of each  digit by each  talker [21]. 
A random  sampling of 1 of the recordings of each  digit by 
each  talker was used.  The transmission  conditions  differed 
substantially  from  those used  in recording  the  other da- 
tabases.  The  nominal  bandwidth of these  recordings was 
200-3200 HZ. 

Each of the 4 sets of digits  contained 1000 digits. For 
training  the  models, only the  digits  in  set  DIG 1 or DIG 
4 were  used;  for  testing  and  evaluating  the  performance 
of the  recognizer,  each of the 4 sets of digits were used. 

A. The HMM Recognizer 

end analysis conditions  consisted of the following: 
For  both  training  and  testing  the  recognizer,  the  front 

sampling race-6.67 kHz 
analysis method-LPC autocorrelation  method,  Ham- 

preemphasis-first order (1 - 0.95 z -') 
analysis frame size-K = ?00 samples (45 ms) 
analysis shift size-K, = K = 100 samples (15 ms) 
LPC order-p = 8. 

For training ehe recognizer,  for  each  digit  in  the  training 
set,  the 100 versions  were  first  clustered  into 2 sets (of 
about 50 versions each),  and for each  set  a  left-to-right 

ming  window 
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TABLE I 
COMPARISON OF PERFORMANCE OF THE HMM RECOGNIZER AS  A  FUNCTION 

OF  THE  TRAINING  SET, MODEL T Y P E ,  YD, AND YE 

Training 
Type Set 

Model 

DIGl 

G A M  DIG1 
C A M  DIGl 
G A M  DIG1 
G A M  

G A M  DIG1 

DIG4 

G A M  DIG4 
G A M  DIG4 
G A M  DIG4 
G A M  

G A M  DIG4 

DIG1 

PGAM DIG1 
PGAM DIG1 
PGAM DIG1 
PGAM 

PGAM DIG1 

DIG4 
PGAM DIG4 
PGAM 

DIG4 PGAM 
DIG4 PGAM 
DIGl  PGAM 

DIG1 
CEPlDC DIG4 
CEP/DC 

YD 

0.0 

10.0 
0.0 

10.0 
10.0 
- 

0.0 
0.0 

10.0 
10.0 
10.0 
- 

0.0 

10.0 
0.0 

10.0 
10.0 

0.0 
0.0 

10.0 
10.0. 
10.0 

- 

- 
10.0 
10.0 - 

.__ 

DIG1 

0.0 

0.3 1.0 
0.9  3.0 
1.2 

10.0 0.4 
3.0 0.3 

0.0 

10.0 
4.9 3.0 
5.7 1.0 
4.9 3.0 
7.1 

3.9 

0.0 1 . 1  
3.0 1.0 
1.0 0.7 

10.0 0.5 
3.0 0.7 

0.0 7.0 
3.0 5.3 
1.0 5 . 3  

10.0 3.4 
3.0  4.9 

- 0.1 
- 2.5 

__ 
rcrage __ 

3.3 
2.3 
2.1 
1 .B 
1.2 
- 

7.4 
3.9 
4.3 
3.5 
2.9 

~ 

4 1  
2.8 
2.1 
2.0 
I .7 
- 

4.9 
7.3 

4 .2  
3.4 
2.9 
_. 

0.7  
1 . 7  

~ 

tgit Error Rate (98 

Test Set 
DIG3 Average DIG4 

5.8 

3.1 4.6 3.5 
3.1 4.1 3.4 
3.67  5.2 3.7 
4.2 6.0  4.3 
6.1 9.2 

4.1 

3.5 0.8 3.7 
3.7 0.5  2.9 
4.23 0.5 2.7 
3.98 0.8 3.1 
6.2 1.7 

5.3 

3.43 5.0 3.6 
3.67  5.9 3.1 
3.83 6.0 3.4 
4.67 6.4 3.8 
5.9  8.3 

4 .0  
4.33  1.4  2.9 
6.1 1.6 

3.2 1 . 1  4.23 

::: i ;I 1 :::: 

HMM was designed  using the  procedure given in  Section 
111. Thus,  the  output of the  training  procedure was a set 
of 2  HMM's per  digit.  Each  HMM  had N = 5 states, with 
M = 5 mixture  densities  per state for  both the GAM and 
PGAM models. 

For  testing  the  recognizer,  each of the 20 models (2 
models X 10 digits)  was  scored  using  a  Viterbi  alignment 
procedure  to  give  the  optimal  state  sequence  alignment of 
the  unknown  observation  sequence  to  the  input  model. The 
distance  measure of (32) was used to  score  the  optimal 
alignment  path. 

B. Experimental  Results 
Several  experiments  were  run  using  different  training 

sets, model  types  (GAM,  PGAM),  and  choices  for yo and 
yE ,  the  scaling  constants  in  the  distance  measure, and the 
results of these  experiments are given  in Table I. Based on 
preliminary  experimentation  it was found  that  a  value of 
yo = 10.0 (with y E  = 0) gave the  best  performance  when 
duration  (without  energy) was incorporated  into  the  dis- 
tance  measure. As such  the  results  in Table I primarily 
show the effects of different  values of y E  when yo was 
either 0 (no  duration  used) or 10.0 (the  best  duration  scal- 
ing  value). 

The results  given  in Table I show  the  following: 
1)  Incorporation of duration  and  energy  into  the  dis- 

tance  measure  improve  recognizer  performance. 
2) Performance of the two model  types (GAM and 

PGAM) was almost  identical  across  all  test  conditions. 
3 )  Performance  with  both  training  sets  (DIG1  and 

DIG4) was almost  identical. 
To gain  perspective  into how the  performance of these 

recognizer  compares to that of previous HMM recognizer, 
the  bottom two lines of Table I  summarize  results  from 
previous work with  a  cepstral  model  using  diagonal  co- 

variance  matrices  (CEPIDC)  [13].  It  can  be  seen  that  the 
best GAM performance  is  about 1 percent  worse  than  the 
CEP/DC model performance, and the  best PGAM perfor- 
mance  is  about 1.2 percent  worse  than  the CEP/DC model 
performance.  (The CEP/DC recognizer  performance is 
equivalent  to the best  performance of a  current  DTW  rec- 
ognizer [13] .) 
C. Computational  Complexity 

Viterbi  decoding  algorithm,  is 
The  computation  required in the recognizer,  using  a 

C V = N . T * ( p + l ) M * I /  

multiplication/addition  operations 

for  a V word vocabulary,  average word length T frames, N 
states  per  model, M mixtures  per state, and pth order  LPC 
representation. 

A standard  DTW  recognizer  requires 
r 2  

C D w = Q * V - i ( p + l )  
3 

multiplication/addition  operations 

for  a Q  template  per word system.  The  ratio of computa- 
tion  is  thus 

Cv NM 
RATIO = - = - 

CDTW QT/3 
which for N = M = 5 ,  Q = 12, T = 40, gives 

E 1 J 
RATIO = - = -!- 

32 6.4 

i.e., a 6.4 to 1  reduction  in  computation  is  achieved  for 
the  LPC  HMM  recognizer  over  the  standard  DTW  recog- 
nizer. 

The computational  advantage of LPC  HMM over CEP/ 
DC  is  mainly  in  the  distortion  computation. LPC  HMM 
requires  computation of a  dot  product  as in (9), while CEP/ 
DC  requires  computation of a  weighted  Euclidean  dis- 
tance.  Practically  speaking,  a  reduction  in  computation of 
from 2 to 4 can be achieved. 

v. DISCUSSION AND SUMMARY 

We have shown  that  the  ubiquitous LPC analysis  tech- 
nique  can  be  consistently welded into  the  general  hidden 
Markov model  methodology. The  resultant autoregressive 
HMM's  are powerful  for  modeling  time-varying  signal 
sources.  For  short  speech  signals  such  as discrete digit 
utterances, however, such  an  extensive  stochastic  model- 
ing may not be necessary. A simple  segment  registration 
procedure may be  adequate in coping  with  the  sequen- 
tially  changing  characteristics of speech. We have also 
demonstrated how the  two  procedures,  namely  the  seg- 
mental  k-means  and the probabilistic Markov chain, can 
be  successfully  combined.  Since  the  segmental  k-means 
procedure  gives  good  initial  model  estimates,  the  models 
resulting  from  reestimation always worked well in  prac- 
tice. 
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For speaker  independent, isolated  digit  recognition,  the 
results given above show that both the GAM and PGAM 
models  give  comparably good performance in the  current 
framework,  although not as good as the more conventional 
continuous  Gaussian mixture density  models based upon 
cepstral representations of the signal [ 131. The small  deg- 
radation, we believe, can  be attributed to the less reliable 
covariance estimate.  [Note  that  the basis density function 
of (12) has an implicit covariance matrix (of the speech 
data vector, not representations  derived  therefrom) which 
is  assumed to satisfy  the  autoregression  condition of (7).] 
The assumption  that the observation  vector  (speech frame) 
x is Gaussian  autoregressive may be  adequate  in stationary 
spectral analysis of x. It, however,  may  not be  an  accurate 
one when dealing  with multiple observations  that are  pro- 
duced by a number of different speakers and  registered in 
the  same  state in the  procedure.  It is generally observed, 
particularly for the  last  state of the model,  that the (equiv- 
alent) distances  from  each  vector to its corresponding cen- 
troid are  fairly diverse  and are inconsistent with the  the- 
oretically  predicted  chi-square  distribution. Such a dis- 
crepancy cannot  be resolved by increasing  the  number of 
mixture  terms although the average  distance is expected 
to decrease in doing so. We have tried models with a higher 
number  (more  than 5 ,  especially  for the  last state) of mix- 
ture  terms based upon the  same  training  data.  The likeli- 
hood  in  the  modeling procedure was significantly in- 
creased, but no  performance  improvement in recognition 
was obtained. Analysis on the  error  patterns showed that 
the unreliable covariance estimates lead to more  increase 
in likelihood  (during  recognition) for incorrect words than 
for the  correct  one,  thus resulting  in  recognition perfor- 
mance degradation.  The effect is  by no  means a large one, 
as witnessed  from  the  recognition results, but  it does  ac- 
count for about a 1 percent increase  in  error  rate over the 
standard  mixture density model in  which the vectors,  often 
spectral representations, in each state  are modelled with 
simple Gaussian mixture distributions characterized by 
mean  vectors  and  covariance  matrices (of the vector rep- 
resentation),  estimates of  which are normally reliable. 

Based on  the  above  discussion,  it  is believed that  the 
GAM and  PGAM HMM models would perhaps have more 
applicability to  speaker dependent  digit  recognizers  and to 
talker  recognition systems  because,  in such cases,  there 
would be considerably less variability of the LPC vectors 
in each state  and,  therefore, the  bias due to large varia- 
bility would be greatly reduced or  eliminated. As yet we 
have not verified this  conjecture, but  work is in progress 
along these  lines. 

We should point out again  that these experimental  re- 
sults  are related to a specific  isolated word recognizer that 
employs highly  constrained  left-to-right  models. The 
methodology presented  here, nevertheless, is a general, 
versatile  one and  its effectiveness in other  applications  de- 
serves  careful, though straightforward, evaluation. 

In  summary we have presented a consistent  framework 
for combining mixture density LPC models with hidden 
Markov models. We have shown how to  train these  models 

using a segmental k-means classifier. Recognition results, 
on a speaker independent  vocabulary of isolated digits, 
were  good, but somewhat inferior  to those based on mix- 
ture densities of LPC derived parameter vectors. Reasons 
for this small degradation in performance were given along 
with suggestions as to  areas in  which the  LPC mixture 
models would be more effective. 
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