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The basic theory of Markov chains has been known to 
mathematicians and engineers for close to 80 years, but it is 
only in the past decade that it has been applied explicitly to 
problems in speech processing. One of the major reasons why 
speech models, based on Markov chains, have not been devel- 
oped until recently was the lack of a method for optimizing 
the parameters of the Markov model to match observed signal 
patterns. Such a method was proposed in the late 1960's and 
was immediately applied to speech processing in several re- 
search institutions. Continued refinements in the theory and 
implementation of Markov modelling techniques have greatly 
enhanced the method, leading to awide range of applications 
of these models. It is the purpose of this tutorial paper to 
give an introduction to the theory of Markov models, and to 
illustrate how they have been applied to problems in speech 
recognition. 

INTRODUCTION 

A SSUME YOU ARE GIVEN the following problem. A 
real world process produces a sequence of observable 

• symbols. The symbols could be discrete (outcomes of coin 

tossing experiments, characters from a finite alphabet, 
• 
quantized vectors from a codebook, etc.) or continuous 

(speech samples, autocorrelation vectors, vectors of linear 

prediction coefficients, etc.). Your job is to build a signal 
model that explains and characterizes the occurrence of 
the observed.symbols. If such a.signal model is obtain- 
able, it then can be used later to identify or recognize 
other sequences of observations. 
• In attacking such a problem, some fundamental deci- 
sions, guided by signal and system theory, must be made. 
For example, one must decide on the form of the model, 
linear or non-linear, time-varying or time-invariant, deter- 
ministic or stochastic. Depending on these decisions, as 
well as other signal processing considerations, several 

possible signal models can be constructed. 
To fix ideas, consider modelling a pure sinewave. If we 

have reason to believe that the observed symbols are from 
a pure sinewave, then all that would need to be measured 
is the amplitude, frequency and perhaps phase of the sine- 
wave and an exact model, which explains the observed 
symbols, would result. 

Consider next a somewhat more complicated signal— 

namely a sinewave imbedded in noise. The noise compo- 
nents of the signal make the modelling problem more 
complicated because in order to properly estimate the 
sinewave parameters (amplitude, frequency, phase) 
one has to take into account the characteristics of the 
noise component. 

In the above examples, we have assumed the sinewave 

part of the signal was stationary—i.e. not time varying. This 
may not be a realistic assumption. If, for example, the 
unknown process produces a sinewave with varying am- 
plitude, then clearly a non-linear model, e.g. amplitude- 
modulation, may be more appropriate. Similarly, if we 
assume that the frequency, instead of the aniplitude, of 
the sinewave is changing, a frequency-modulation model 

might be most appropriate. 

Linear system models 

The concepts behind the above examples have been 
well studied in classical communication theory. The vari- 

ety and types of real world processes, however, does not 

stop here. Linear system models, which model the ob- 
served symbols as the output of a linear system excited by 
an appropriate source, form another important class of 
processes for signal modeling and have proven usefui for 
a wide variety of applications For example, "short time" 
segments of speech signals can be effectively modeled as 
the output of an all-pole filter excited by appropriate 
sources with essentially a flat spectral envelope. The signal 
modeling technique, in this case, thus involves deter- 
mination of the linear filter coefficients and, in some 
cases, the excitation parameters. Obviously, spectral analy- 
ses of other kinds also fall within this category. 

One can further incorporate temporal variations of the 
signal into the linear system model by allowing the filter 
coefficients, or the excitation parameters, to change with 
time. In fact, many real world processes cannot be mean- 

ingfully modeled without considering such temporal 
variation. Speech signals are one example of such pro- 
cesses. There. are several ways to address the problem of 
modeling temporal variation of a signal. 

As mentioned above, within a "short time" period, 
some physical signals, such as speech, can be effectively 
modeled by a simple linear time-invariant system with the 
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appropriate excitation. The easiest way then to address the 
time-varying nature of theprocess is to view it as a direct 
concatenation of these smaller "short time" segments, 
each such segment being individually represented by a 
linear system model. In other words, the overall model is 
a synchronous sequence of symbols where each of the 
symbols is a linear system model representing a short seg- 
ment of the process. In a sense this type of approach 
models the observed signal using representative tokens of 
the signal itself (or some suitably averaged set of such 
signals if we have multiple observations). 

Time-varying processes 

Modeling time-varying processes with the above ap- 
proach assumes that every such short-time segment of 
observation is a unit with a prechosen duration. In gen- 
eral, however, there doesn't exist a precise procedure 
to decide what the unit duration should be so that both 
the time-invariant assumption holds, and the short-time 
linear system models (as well as concatenation of the mod- 
els) are meaningful. In most physical systems, the duration 
of a short-time segment is determined empirically. In 
many processes, ofcourse, one would neither expect the 
properties of the process to change synchronously with 
every unit analysis duration, nor observe drastic changes 
from each unit to the next except at certain instances. 

Making no further assumptions about the relationship be- 
tween adjacent short-time models, and treating temppral 
variations, small or large, as 11typ!cal" phenomena in the 
observed signal, are key features in the above direct con- 
catenation technique. This template approach to signal 
modeling has proven to be quite useful and has been the 
basis of a wide variety of speech recognition systems. 

There are good reasons to suspect, at this point, that the 
above approach, while useful, may not be the most effi- 
cient (in terms of computation, storage, parameters etc.) 

• techniqu.e as far as representation is concerned. Many real 
world processes seem to manifest a rather sequentially 
changing behavior; the properties of the process are usu- 
ally held pretty steadily, except for minor fluctuations, 
for a certain period of time (or a number of the above- 
mentioned duration units), and then, at certain instances, 
change (gradually or rapidly) to another set of properties. 
The opportunity for more efficient modeling can be ex- 

ploited if we can first identify these periods, of rather 
steadily behavior, and then are willing to assume that the 
temporal variations within each of these steady periods 
are, in a sense, statistical. A more efficient representation 
may then be obtained by using a common short time 
model for each of the steady, or weIl-behved parts of the 
signal, along with some characterization of how one 
such period evolves to the next. This is how hidden 
Markov models (HMM) come about. Clearly, three prob- 
lems have to be addressed: 1) how these steadily or dis- 
tinctively behaving periods can be identified, 2) how the 
11sequential!y" evolving nature of these periods can be 
characterized, and 3) what typical or common short time 
model should be chosen for each of these periods. Hid- 

den Markov models successfully treat these problems un- 
der a probabilistic or statistical framework. 

It is thus the purpose of this paper to explain what a 
hidden Markov model is, why it is appropriate for certain 
types of problems, and how it can be used in practice. In 
the next section, we illustrate hidden Markov models via 
some simple coin toss examples and outline the three 
fundamental problems associated with the modeling tech- 
nique. We then discuss how these problems can be solved 
in Section III. We will not direct our general discussion to 
any one particular problem, but at the end of this paperwe 
illustrate how HMM's are used via a couple of examples in 
speech recognition. 

DEFINITION OF A HIDDEN MARKOV MODEL 

An HMM is a doubly stochastic process with an under- 

lying stochastic process that is not observable (it is hid- 
den), but can only be observed through another set of 
stochastic processes that produce the sequence of ob- 
served symbols. We illustrate HMM's with the following 
coin toss example. 
Coin toss example 

To understand the concept of the HMM, consider the 

following simplified example. You are in a room with a 
barrier (e.g., a curtain) through which you cannot seefl 
what is happening. On the other side of the barrier is 

another person who is performing a coin (or multiple 
coin) tossing experiment. The other person will not tell 
you anything about what he is doing exactly; he will only 
tell you the result of each coin flip. Thus a sequence of 
hidden coin tossing experiments is performed, and you 
only observe the results of the coin tosses, i.e. 

010203 OT 

where C stands for heads and T stands for tails. 
Given the above experiment, the problem is how do we 

build an HMM to explain the observed sequence of heads 
and tails. One possible model is shown in Fig. la. We call 
this the "1-fair coin" model. There are two states in the 
model, but each state is uniquely associated with either 
heads (state 1) or tails (state 2). Hence this model is not 
hidden because the observation sequence uniquely de- 
fines the state. The model represents a "fair coin" becaUse 
the probability of generating a head (or a tail) following a 
head (or a tail) is 0.5; hence there is no bias on the current 
observation. This is a degenerate example and shows how 
independent trials, like tossing of a fair coin, can be inter- 
preted as a set of sequential events. Of course, if the 
person behind the barrier is, in fact, tossing a single fair 
coin, this model should explain the outcomes very well. 

A second possible HMM for explaining the observed 
sequence of coin toss outcomes is given in Fig. lb. We call 
this model the "2-fair coin" model. There are again 2 states 
in the model, but neither state is uniquely associated with 
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either heads or tails. The probabilities of heads (or tails) in 
either state is 0.5. Also the probability of leaving (or re- 
maining in) either state is 0.5. Thus, in this case, we can 
associate each state with a fair (unbiased) coin. Although 
the probabilities associated with remaining in, or leaving, 
either of the two states are all 0.5, a little thought should 
convince the reader that the statistics of the observable 
output sequences of the 2-fair coins model are indepen- 
dent of the state transitions. The reason for this is that this 
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model is hidden (i.e. we cannot know exactly which fair 
coin (state) led. to the observed heads or tails at each ob- 
servation), but is essentially indistinguishable (in a statisti- 
cal sense) from the 1.-fair coin model of Fig. la. 

Figuresic and id show two more possible HMM's which. 
can account for theobserved sequence of heads and tails. 
The model of Fig. ic, which we call the 2-biased coins 
model, has two states (corresponding to two different 
coins). In state 1, the coin is biased strongly towards 
heads. In state 2, the coin is biased strongly towards tails. 
The state transition probabilities are all equal to 0.5. This 
2-biased coins model is a hidden Markov model which 
is distinguishable from the two previously discussed 
models. Interestingly, the reader should be able to con- 
vince himself that the long time statistics (e.g. average 
number of heads or tails) of the observation sequences 
from the HMM of Fig. ic are the same as those from the 
models of Figs. la and lb. This model is very appropriate 
if what is happening behind the barrier is as follows. The 
person has three coins, one fair and the other two biased 
according to the description in Fig. ic. The two biased 
coins are associated with the two faces of the fair coin 
respectively. To report the outcome of every mysterious 
coin flip, the person behind the barrier first flips the fair 
coin to decide which biased coin touse, and then flips the 
chosen biased coin to obtain the result. With this model, 
we thus are able to look into and explain the above subtle 
characteristic changes (i.e. switching the biased coins). 

The model of Fig. ld, which we call th.e 3-biased coins 
model, has three states (corresponding to three different 
coins). In state 1 the coin is biased slightly towards heads; 
in state 2 the coin is biased strongly toward tails; in state 3 
the coin is biased slightly toward tails. We have not speci- 
fied values of the state transition probabilities in Fig. id; 
clearly the behavior of the observation sequences pro- 
duced by such a model are strongly dependent on these 
transition probabilities. (To convince himself of this, the 
reader should consider two extreme cases, namely when 
the probability of remaining in state 3 is large (>0.5), or 
small (<005). Very different sequence statistics will result 
from these two extremes because of the strong bias of the 
coin associated with state 3). As with the 2-biased coin 
model, some real scenario behind the barrier, corre- 
sponding to such a model can be composed; the reader 
should find no difficulty doing this himself. 

There are several important points to be learned from 
this discussion of how to model the outputs of the coin 

tossing experiment via HMM's. First we note that one of 
the most difficult parts of the modeling procedure is to 
decide on the size (the number of states) ofthe model. 
Without some a priori information, this decision often is 

difficult to make and could involve trial and error before 

settling onthe most appropriate model size. Although we 
stopped at a 3-coin model for the above illustration, even 
this might be too small. How do we decide on how many 
coins (states) are really needed in the model? The answer 
to this question is related to an even larger question, 
namely how do we choose model parameters (state transi- 



tion probabilities, probabilities of heads and tails in each 

state) to optimize the model so that it best explains the 
observed outcome sequence. We will try to .answer this 

question in the section on Solutions to the Three HMM 
Problems as this is the key to the successful use of H MM's 
for real world problems. A final point concerns the size of 
the observation sequence. If we are restricted to a small 
finite observation sequence we may not be able to reliab!y 
estimate the optimal model parameters. (Think of the 
case of actually using 10 coins but be given a set of 
50—100 observations). Hence, in a sense, depending on the 
amount of model training data we are given, certain 
HMM's may not be statistically, reliably different. 

Elements of an HMM 

We now explain the elements and the mechanism of the 

type of HMM's that we discuss in this paper: 

1. There are a finite number, say N, of states in the 
model; we shall not rigorously define what a state is but 

simply say that within a state the signal possesses some 

measurable, distinctive properties. 
2. At each clock time, t, a new state is entered based 

upon a transition probability distribution which depends 
on the previous state (the Markovian property). (Note that 
the transition may be such that the process remains in the 

previous state.) 
3. After each transition is made, an observation output 

symbol is produced accordingto a probability distribution 
which depends on the current state. This probability distri-. 
bütion is held fixed for the state regardless of when and 
how the state is entered. There are thus N such obser- 
vation probability distributions which, of course, repre- 
sent random variables or stochastic processes. 

Fig. 2. There are N urns, each filled with a large number of 
colored balls. There are M possible colors for each ball. 
The observation sequence is generated by initially choos- 

ing one of the N urns (according to an initial probability 
distribution), selecting a ball from the initial urn, record- 

ing its color, replacing the ball, and then choosing a new 
urn according to a transition probability distribution asso- 

ciated with the current urn. Thus a typical observation 

sequence might be: 

clock time 1 2 3 4 . . . T 

urn (hidden) state q3q1q1q2 

color (observation). R B y y.. . R 

We now formally define the following model notation 
for a discrete observation HMM: 

T = length of the observation sequence (total number of 
clock times) 

N = number of states (urns) in the model 
M = number of observation symbols (colors) 
Q = {q, q2, . . . , qN}, states (urns) 
V = {v1, v2,.. . ,VM} discrete set of possible symbol obser- 

vations (colors) 
A = {a,1},a,1 = Pr(q,att + 1 q,att),statetransitionproba- 

bility distribution 
B {b1(k)}, b,(k) = Pr(vk attq1 at t), observation symbol 

probability distribution in state j 
= {ir,}, ii = Pr(q1 at t = 1), initial state distribution 

Using the model, an observation sequence, 0 = 

0102,.. is generated as follows: 
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1. Choose an initial state, i1, according to the initial state 
distribution, ir; 

2. Set t = 1; 
3. Choose O according to b•(k), the symbol probability 

distribution in state it; 
4. Choose it+i according to {at+}, i+ 1,2,. . . , N, 

the state transition probability distribution for state i; 
5. Set t = t + 1; return to step 3 if t < T; otherwise 

terminate the procedure. 

We use the compact notation A = (A, B, ii) to represent 
an HMM. Specification of an HMM involves choice of the 
number of states, N, and the number of discrete symbols 
M, (we will briefly discuss continuous density HMM's at 
theend of this paper),, and specification of the three 

probability densities A, B, and ir. If we try to specify the 
relative importance of the three densities, A, B, and IT, 

then it should be clear that for most applications ir is the 
least important (this represents initial conditions), and B is 

the most important (since it is directly related to the ob- 
served symbols). For some problems the distribution A is 

also quite important (recall the 3-biased coins models dis- 
cussed earlier), whereas for other problems (e.g. isolated 
word recognition problems) it is of less importance. 
The three problems for HMM's 

Given the form of the HMM discussed in the previous 
section, there are three key problems of interest that must 
be solved for the model to be useful in real world applica- 
tions. These problems are the following: 

Given the observation sequence 0 = 
0, 02,. . . , 0-, and the model A = 
(A,B,ir), how we compute Pr(OIA), the 
probability of the observation sequence. 
Given the observation sequence 0 = 
01, 02,. . . , 0,-, how we choose a state 

sequence! = i1,i2 ,h- which is opti- 
mal in some meaningful sense. 
How we adjust the model parameters 
A = (A, B, IT) to maximize Pr(O IA). 

Problem 1 is the evaluation problem: given a model and 
a sequence of observations, how we can compute the 

probability that the observed sequence was .produced 
by the model. We can also view the problem as: given a 
model and a sequence of observations, how we "score" or 
evaluate the model. The latter viewpoint isvery useful. If 
we think of the case in which we have several competing 
models (e.g. the four models of Fig. 1 for the coin tossing 
experiment), the solution to problem 1 allows us to 
choose the model which best matches the observations. 

Problem 2 is the one in whichwe attempt to uncover the 
hidden part of the model, i.e. the state sequence. This 
is a typical estimation problem. We usually use an opti- 
rnality criterion to solve this problem as best as possible. 
Unfortunately, as we will see, there are several possible 
optimality criteria that can be imposed and hence the 
choice of criterion is astrong function of the intended use 
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•for the uncovered state sequence. A typical use of the 
recovered state sequence is to learn about the structure of 
the model, and to get average statistics, behavior, etc. 
within individual states. 

Problem 3 is the one in which we attempt to optimize 
the model parameters so as to best describe how the ob- 
served sequence comes about. We call this a training se- 

quence in this case since it is used to train the model. The 

training problem is the crucial one for most applications 
of HMM's. since it allows us to optimally adapt model 

parameters to observed training data—i.e. to create best 
models for real phenomena. 

To fix ideas, consider the following speech recognition 
scheme. We want to design an N-state HMM for each word 
of a V-word vocabulary. Using vector quantization (VQ) 
techniques, we represent the speech signal by a sequence 
of VQ codebook symbols derived from an M-word code- 
book. Thus we start with a training sequence, for each 

vocabulary word, consisting of a number of repetitions of 
the spoken word (by one or more talkers). We. use the 
solution to Problem 3 to optimally get model parameters 
for each word model. To develop an understanding of the 

physical meaning of the model states, we use the solution 
to Problem 2 to segment each of the word training se- 

quences into states, and then study the observations oc- 

curring in each state. The result of this study may lead to 
further improvements on the model. We shall discuss this 
in later sections. Finally to do recognition on an unknown 

word, we use the solution to Problem 1 to score each 
word model based upon the given test observation se- 

quence, and select the word whose word model score is 
the highest. 

We now present the formal mathematical solutions to 
each of the three fundamental problems for HMM's. And, 
as we shall see, these three problems may be linked to- 

gether under our probabilistic framework. 

SOLUTIONS TO THE THREE HMM PROBLEMS 

Problem 1 

We wish to calculate the probability of the observation 

sequence 0, given the model A. The most straightforward 
way of doing this is through enumerating every possible 
state sequence of length T (the number of observations). 
For every fixed state sequence I 11i2. . . the proba- 
bility of the observation sequence 0 is Pr(0 I I, A), where 

Pr(0 I I, A) = b,1(01)b12(02) . . . b,(O,-) 

The probability of such a state sequence I, on the other. 

hand, is 

Pr(l IA) = ir,1a,112a,2,3 a,-_fl-. 

The joint probability of 0 and 1, i.e., the probability that 
0 and I occur simultaneously, is simply the product of the 
above two terms, Pr(0,!IA) = Pr(OII,A) Pr(IIA). The 

probability of 0 then is obtained by summing this joint 
probability over all possible state sequences: 

Problem 1 — 

Problem 2 — 

Problem 3 — 



t 

Box 1 

and generate symbol OT with probability b,T(OT). 
A little thought should convince the reader that the cal- 

culation of Pr(O(A), accurding to its direct definition, in- 
volves on the order of 2T , rajculations, since at every 
time t = 1,2,. . . ,T, there are N possible states to go 

_________________________________________________ through and for each summand about 2T calculations are 
required. (To be precise, we need (2T — 1)NT multi- 

The interpretation of the computation in the above equa- plications and NT 1 additions.) This calculation is com- 
tion is the following. Initially (at time t = 1) we are in state putationally unfeasible, even for small values of N and T; 
Ii with probability m, and generate the symbol O with e.g. for N = 5, T = 100, there are on the order of 
probability b,1(01). We then make a transition to state 2 2 100 . 5100 1072 computations! Clearly a more efficient 
with probability a,112, and generate symbol 02 with proba- procedure is required to solve problem 1 . Such a pro- 
bility b,2(02). This process continues until we make the last cedure exists and is sometimes called the forward- 
transition from state 'T1 to state 'T with probability a,T_l,7 backward procedure. (See Box 1) 
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There are several possible ways Qf solving Problem 2, 
namely finding the optimal state sequence associated with 
the given observation sequence, since there are several 

possible optimality criteria. One possible op.timality cri- 
terion is to choose the states, h,, which are individually 
most likely. This maximizes the expected number of cor- 
rect individual states. To implement this solution we de- 
fine the variable 

= Pr(it = O,A) 

i.e. the probability of being in state q1 at time t, given the 
observation sequence 0 and the model A. A little thought 
should convince the reader that yt(!) is trivially expressed 
in terms of the a's and /3's as 
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I = argmax{yt(i)] 1 t T 1iN 

There might be some problems with the above criterion 
and solution, however. When there are disallowed 
transitions—i.e. a11 = 0 for some i and j, the obtained 
state sequence may in fact be an impossible state se- 

quence. The solution simply determines the most likely 
state at every instance without regard to the global trellis 
structure, the neighboring (in time) state, and the length 
of the observation sequence. It is still useful, though, as in 

practice such undesirab!e situations do not usually occur, 
and this instantaneous optimality provides insights for a 

theoretically tractable parameter smoothing scheme. 
The drawback of the above approach points to the ne- 

cessity of global constrains, of some type, on the derived 

optimal state sequence. Almost trivially, an optimality cri- 
terion of this type is to find the single best path (state 

sequence) with the highest probability, i.e. to maximize 
Pr(O, I/A). A formal technique for finding this single best 
state sequence exists and is called the Viterbi algorithm. 
(See Box 2) 

Problem 3 
The third problem is to adjust the model parameters 

(A, B, IT) to maximize the probability of the observation 

since at(i) accounts for 01, 02,. . . , Ot and state q at t, and 

f3(i) accounts for . , OT given state q at t. The nor- 
malization factor, Pr(OIA), makes yt(I) a conditional 
probability, so that Z.1 yt(I) = 1. 

Using yt(I), the individually most likely state, i, at time 
t is 

Problem 2 

— a(i)/3t(i) 
yt(') — 

Pr(O A) 



sequence given the model. This is the most difficult of the 
three problems we have discussed. There is no known way 
to solve for a maximum likelihood model analytically. 
Therefore an iterative procedure, such as the Baum-Welch 
method, or gradient techniques for optimization must be 
used. Here we will only discuss the iterative procedure. It 
appears that with this procedure, the physical meaning of 
various parameter estimates can be easily visualized. 

To describe how we (re)estimate HMM parameters, we 
first define t(i,j) as 

(i,j) = Pr(/t = q, it÷i = q1 I 0, A) 

i.e. the probability of a path being in state q at time t and 
making a transition to state q1 at time t + 1, given the 
observation sequence and the model. From Fig. 5 it 
should be clear that we can write et(i,j) as 

t(',J) — 

Pr(O A) 

:i4 ic 

HI 
: 

H 

, 
?iL 

H I 

:tiI 
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In the above, at(i) accounts for the first t observations, 
ending in state q at time t, the term a,b,(O+1) accounts 
for the transition to state q1 at time t + 1 with the occur- 
rence of symbol Ot+, and the term t+i(J) accounts for 

ox 3 



the remainder of the observation sequence. The normal- 
ization factor Pr(O A) provides the proper normalization 
for et(i,/). 

Recall that we have previously defined yt(I) as the proba- 
bility of being in state q at time t, given the observation 
sequence and the model; hence we can relate yt(1) to 
et(i,J) by summing et(i,j) over), giving 

yc(i) = 

If we sum yt(I) over the time index t, we get a quantity 
which can be interpreted as the expected (over time) num- 
ber of times that state qi is visited, or equivalently, the 

expected number of transitions made from state q, if we 
exclude the last moment, T, in the summation. Similarly, 
summation of et(i,/) over t (from t = 1 to t = T — 1) can 
be regarded as the expected number of transitions from 
state q, to state q1. That is 

T—1 

yt(I) = Expected number of transitions 
made from q 

e(i,j) Expected number of transitions 
• from state qi to state q1 

Using the above formulas (and the concept of counting 
event occurrences) we can use the Baum-Welch method 
to reestimate values of the HMM parameters. (See Box 3) 

Summary of results 

We have shown how to define an HMM, how to score it 
on an observation sequence (Problem 1), howto make'a 
best guess as to the hidden state sequence (Problem 2), 
and how to optimize model parameters to best match a 

given training sequence (Problem 3). In the next section 
we discuss some properties of the models, issues involved 
in practical implementation, and some special cases of 
the B parameters. Finally, in Section V, we illustrate the 

application of HMM's to a simple speech recognition sys- 
tem to show one possible way of applying the concepts 
discussed here. 

ISSUES WITH HMM'S 

In this section we discuss several issues related to types 
of HMM's, issues in implementation, and extensions of 
the basic model to more advanced form• s. We will, not be 

rigorous here, but will only give indications of the kinds of 
problems peoplehave been concerned with. More detail 
on the mathematical aspects are given in the references. 

Types of I-IMM's 

The general HMM we have, been dealingwith until now 
is assumed to have essentially a full state transition matrix, 
i.e. transitions can be made, from any state ir some way to 
any other state. Such models 'are often ergodic in the 
sense that any state will be revisited with probability one 
and that such revisits are not required to take place at 
periodic intervals of time. W show an example of one 
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such model in Fig. 6a. (Here N = 4 states). For some ap- 
plications we are interested in. non-ergodic models where 
we impose constraints on the state transition matrix. For 

example, Figs. 6b and 6c show two examples of non-' 
ergodic HMM's. For these cases the state transition matrix 
is upper triangular (i.e. transitions can only be made to a 
state whose index is as large or larger than the index of the 
current state). Such models have been called left-to-right 
models since the state sequence which produced the ob- 
servation sequence must always proceed from the left-. 
most state to the rightmost state. Such left-to-right models 

inherently impose a temporal order to the HMM since 
lower numbered states acco,unt for observations occur- 

ring prior to those for higher numbered states. ,We shall 
see how we use this feature to our advantage in our dis- 
cussion of how we apply HMM's to speech recognition. 



Implementation issues 

In the section on Solutions to the Three HMM Prob- 
lems, we outlined several simple and straightforward pro- 
cedures for working with HMM's. For the most part the 

procedures work exactly as discussed. However there is 

at least one computational issue of significance, and a 

couple of practical aspects that must be kept in mind, for 
the procedures to be maximally useful. 

The computational issue concerns the implementa- 
tion of the forward-backward computation. A quick glance 
will convince the reader that both at(1) and 13t(i) tend 
to zero geometrically fast '(recall that all probabilities are 
less than 1.0). Hence a scaling technique of the a's and 

's is required to avoid mathematical underffow. The de- 
tails of such scaling procedures are beyond the scope of 
this paper. 

A second issue concerns the use of a finite set of training 
data for estimating the HMM parameters. If we look at 
the reestimation formulas we see that a parameter will be 
set toO if there are no occurrences in the training set— i.e. 
if a symbol does not occur often enough in t.he observa- 
tion sequence, then the probability for that symbol will 
be 0 in some states. If this effect is due to the small size 
of the training observation sequence, then special effort 
must be made to insure that no HMM parameter becomes 
too small; If it is a real effect, then a zero probability 
parameter is perfectly reasonable. In any case care, must 
be taken to guarantee (perhaps via constraints on the 
parameter space) that the estimated HMM parameters 
are reasonable. 

Finally we point out that all the formulas presented in 
this paper for a single observation sequence can be modi- 
fied to handle the case of multipleobservation sequences. 
Hence one could do training of an HMM from a long 
single sequence, or from a set of multiple' observation 
sequences' (particularly useful for non-ergodic models). 

Special cases of the B parameters 

Until now we have on!y considered the case of discrete 
symbol HMM's, i.e. where the observation sequence was 
one of a set of M discrete symbols. The model can readily 
be extended to the case where the observations are con- 
tinuous. symbols, or more generally, continuous vectors, 
x. For such a model the b1(k) probability density is replaced 
by the continuous density, b1(x), 1 j N, where 

b1(x)dx = probability that observation vector, 0, lies be- 
tween x and x + dx. 

There are several special forms for b1(x) which have been 
.proposed, including: 
1. Gaussian M-component mixture densities of the form 

b1(x) = CjkX[X /hjk,U)k] 

where CIk is the mixture weight, X is the normal density 
and pjk and UJk are the mean vector and covariance matrix 
associated with state j, mixture k. 

aJk)/2 

bjk(x) = 
(2.)K/2 

(x; a) = ra(0)rx(0) + 2 ra(i)rx(i) 
1=1 

ô(x; a) is the standard LPC distance between a vector x (of 
dimension K) with autocorrelation r, and an LPC vector a 

(of dimension p) with autocorrelatiori ra. 

These alternate density functions have been used to 
good advantage in several speech recognition systems. 

EXAMPLE OF THE USE OF HMM'S—ISOLATED WORD 
'RECOGNITION 

Hidden Markov models have been found to be ex- 

tremely useful for ecology, cryptanalysis, and a wide spec- 
trum of speech applications. Here we consider the case 
of trying to use HMM's to build an isolated word recog- 
nizer. Assume we have a vocabulary of V words to be 

recognized. We have a training set of L tokens of each 
word (spoken by 1 or more talkers), and an independent 
testing set. To do speech recognition we perform the fol- 
lowing steps: 
1. First we build an HMM for each word in the vocabulary. 
We use the observations from the set of L tokens to esti- 
mate the optimum parameters for each word, giving 
model X', for the vth vocabulary word, 1 v V. 

2. For each unknown word in the test set, characterized by 
observation sequence 0 = 01, 02,.. , O,-, and for each 
word model, Ày, we calculate P, = Pr(0 Al according to 
the procedure of the section on Solution to the Three 
HMM Problems. 
3. We choose the word whose model probability is high- 
est, i.e. v' = argmax[P] 1vV 

The HMM based recognizer has been applied to several 
word recognition tasks using both a discrete symbol ob- 
servation set (VQ codebook' symbols)', and at least two 
continuous observation models. The table below (based 
on experiments performed at AT&T Bell- Laboratories) 
gives some performance characteristics for a speaker in- 
dependent system using a vocabulary of 10 digits. 

2. Gaussian autoregressive M-component mixture densi- 
ties of the form 

M 

b1(x) 
= Cjkb,k(X) k1 

where 
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rational information is often represented in a normalized 
form for word models, (since the word boundary is essen- 

tially known), in the form: 

P1(I/T) = probability of being in state / for exactly (I/T) of 
the word, where T is the number of. frames in the 
word and I is the number of frames spent in 
state j. 

A typical set of histograms of P1(l/T) for a 5-state model 
for the word "six" is shown in Fig. 9. As seen from the 

figure, the first state is generally very brief; the second and 
third states have longer duration; the fourth state has a 
well-defined peak in the density with an average duration 
of about 20 percent of the word and is never skipped over 
(i.e. (/T = 0); the final state (the stop plus the fricative) 
covers about 50 percent of the word length and is also 

always present in the utterances. 
It is found that this durational information is rather 

robust under different channel conditions and is quite 
useful for word recognition. The main effect appears to be 
from the resultant constraint that certain states must be 

present for some minimum duration. 

Score evaluation 

In the section on Solutions to the Three HMM Prob- 
lems, we already explained how the forward-backward 

procedure works in obtaining the quantity Pr(OIA). .This 

quantity is the summation of Pr(O, I A) over all possible 
state sequences I. Since the Viterbi algorithm efficiently 
finds themaximum of Pr(O,!IA) over all I, a question 
is then: what is the relationship between Pr(O A) and 
max, Pr(O,!IA)? 

Interestingly enough, for speech signals and with some 

properly chosen model specifications, the dynamic range 

of Pr(O, I IA) is usually very large and max1 Pr(O, I I A) is 

usually the only significant term in the summation for 
Pr(O IA). Therefore, in such cases, either the forward- 
backward procedure or the Viterbi algorithm works 
equally well in the word recognition task. 

Other considerations 

HMM's provide a framework based upon which highe.r 
level structures in continuous speech signals may be inte- 

grally modelled. Care, however, must be taken in imple- 
menting such an extension. 

The above, left-to-right word models effectively exploit 
such a priori information as the word boundaries. Direct 
concatenation of the above word model may or may not 
be viable for continuous speech recognition, particularly 
when the vocabulary is large. Constructing a global HMM 
from small HMM's based upon such' units as phonemes, 
etc. has been and is still being pursued. 

Another consideration relates to the robustness of the 
modelingtechnique. Different assumptions on the form 
of observation density, as well as the a priori Markov struc- 
ture constraints lead to different levels of robustness in 

performing the recognition task. This robustness issue, of 
course, is compounded by the various representations of 
the short-time speech. symbols (spectra). Some represen- 
tations may be better characterized as Gaussian mul- 
tivariates and some may be less susceptible to channel 
fluctuations, speaker variations, and noise contamination 
etc. It is yet unknown what the best combination is. 

The above considerations in no way discourage the use 
of HMM in speech recognition. On the contrary, these 
are the main directions that research effort is pointing to 
for solving the ultimate recognition problem with HMM's. 
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