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ABSTRACT. In this paper a signal modeling technique based upon
finite mixture autoregressive probabilistic functions of Markov chains
is developed and applied to the problem of speech recognition,
particularly speaker-independent recognition of isolated digits. Two
types of mixture probability densities are investigated: finite mixtures
of Gaussian autoregressive densities (GAM) and nearest-neighbor
partitioned finite mixtures of Gaussian autoregressive densities
(PGAM). In the former (GAM), the observation density in each
Markov state is simply a (stochastically constrained) weighted sum of
Gaussian autoregressive densities, while in the latter (PGAM) it
involves nearest-neighbor decoding which, in effect, defines a set of
partitions on the observation space. In this paper we discuss the signal
modeling methodology and give experimental results on speaker
independent recognition of isolated digits.

I. Introduction

Signal modeling based upon hidden Markov models (HMM's) may
be viewed as an effective technique that extends conventional
stationary spectral analysis principles to the analysis of time-varying
signals [1-2]. The primary concern in the hidden Markov modeling
technique is the estimation of model parameters from observed
sequences. A reestimation algorithm due to Baum & Eagon 131 is
usually used for this purpose. In this paper, we concentrate primarily
on mixtures of Gaussian autoregressive densities which are the bases in
the maximum likelihood formulation of the ubiquitous linear prediction
analysis 11,2,41. Poritz was the first to show how the ideas of linear
prediction analysis could be welded into the hidden Markov model
methodology [1]. However, in his work, Poritz only considered a single
Gaussian autoregressive density per state. Our work extends this
initial work to the case of a mixture of Gaussian autoregressive
densities.

We consider two types of mixture densities in this paper. The first
type is simply a finite mixture of Gaussian autoregressive densities,
denoted as GAM (Gaussian Autoregressive Mixture) for brevity,
which allows straightforward maximum likelihood estimation. The
second type is a finite mixture of Gaussian autoregressive densities
with nearest-neighbor decoding, denoted as PGAM (P for Partitioned).
In this type of mixture density, the vector space is implicitly
partitioned into regions. Each region is defined by a Gaussian
autoregressive density. To evaluate the pdf for a point in the measure
space, the appropriate region to which the point belongs is first found
by a nearest-neighbor criterion. This resembles a vector quantization
operation in source coding. The goal is to further link the vector
quantization technique for source coding to a super-structure, namely a
Markov chain, so as to exploit the non-memoryless nature of speech
signals.

II. Mixture Autoregressive Hidden Markov Models

We consider an N-state homogeneous Markov chain with state
transition matrix A = 1a,], i,j 1,2 N. Associated with each
state j of the unobservable Markov chain is a probability density
function 1, (x) of the observed K-dimensional random vector

= 1x0,x1 XK_11 (K consecutive samples of the speech signal).
We will use the notation b3 to denote the parameters defining b (x).
Also let 0 be the observed sequence, o = (01,02 OT), where T is
the duration of the sequence and each o, is an observed vector x. The
probability density function for 0 in the T-fold cartesian product of
the K-dimensional vector space, = x X X 911K, is then

f(OjA) f(0,SIX)
S

7.

ir J a,_.b3,(o) . (1)
S i—i

In Eq. (1), we use X to denote the hidden Markov model,
X = (,A,B) where x is the initial state probability vector, A is the
transition matrix and B is the set of parameters defining {b, (x) },
j = 1,2 N. S is a state sequence, S (o,i ST),
s1 E { 1,2 N), and the summation is over all possible state
sequences S.

In GAM, the observation density b(x), for j = 1,2 N, has
the form

M
GAM : b (x) = Cimbirn (x) (2)

rn-i

where M is the number of mixture components, Cjm is the weight for
the mth mixture component, and the double-subscripted function
birn (x) is the basis probability density function for the m th mixture
component, all related to state j. The mixture weight Cjrn must satisfy
the stochastic constraint

MCjml, j1,2 N (3)
rn-i

so that

f b(x)dx C1 f jrnGt2( 1.
rn—I

In PGAM, on the other hand, the observation density b (x)
assumes the form

PGAM : b (x) = max Cjrnbjrn (x) . (4)
rn—l,2 M

It is clear that, in PGAM, only the most likely mixture component is
chosen as the observation density for each particular vector x. There is
thus a built-in classification rule that implies a partition on Rx. Let
°Jrn m = 1,2 M be the partitioned regions. In each region
jrn every xE jrn has

cjrnbjrn(x) ? c1sb(x)
for all e m. The stochastic constraint becomes

5 b(x)dx Cj 5 bjrn(x)d = 1. (5)
Rk rn—i 0

The constraint on CJrn that results from Eq. (5) is discussed below.

Parameters of the model to be estimated therefore include: 1) the
transition matrix [a,1], i,j 1,2 N; 2) the mixture weight (for
GAM) [Cjrn], j = 1,2 N and m = 1,2 M; and 3) all



necessary parameters defining the set of basis probability densities
{bjm(x)}, j = 1,2 N and n 1,2 M. As will be shown
shortly, the stochastic constraints on the transition probabilities, i.e.
N

a1 = 1, as well as the mixture weights as required in Eq. (3) for
j—1
the GAM ease can be automatically satisfied in the reestimation
algorithm. To satisfy the requirement of Eq. (5) for PGAM,
nevertheless, is not a trivial task during reestimation where an increase
in likelihood after each iteration must be maintained. We therefore
use a simplified expression for b (x) in the PGAM case:

PGAM: b(x) = -p—- max bp,,(x).44 ,n—I,2 31
(6)

Note that the use of Eq. (6) excludes the mixture weights as the model

parameters since Ci,,, for all j and in is implied. In addition, we

assume that

5 bjm(x) dx — 1 for all j,m

oJ

for the constraint of Eq. (5) to be approximately satisfied.
Experimentally, we found this to be the case for typical values of N
and M chosen in this study.

2.1 Gaussian Autoregressive Densities

We assume that the basis probability density function for the
observation vectors is Gaussian autoregressive of order p, i.e.

where

f(x) (2rr)_2exp{— 4 ô(x;a)}

l(x;a) = r,,(O)r(O) + 2 r,,O)r(i)

a' = [1, a1, a2 o, I, the autoregression coefficient vector,

and

ra(i) Aanan+i with a5= 1

K-i-I
r(i) x,,xn+

We assume in the above observation vector x has already been
properly scaled by the square root of the average residual energy
resulting from LPC analysis. Note that ra 's are the autocorrelation of
the autoregressive coefficients and r's are the autocorrelation of the
(normalized) observation samples. Maximum likelihood estimation of
the autoregressive coefficients from x requires minimization of b(x;a),
a procedure equivalent to the autocorrelation method in linear
prediction analysis.

We use Eq. (7) as the basis density function:

bjm(x) = (2irY"12expV
4o(x;aj,,}

(11)

where aim is clearly the parameter vector defining the density for the
mth mixture component in state j.

2.2 Reestimation Transformation

For a given observation 0, the reestimation algorithm starts with
an initial guess of the model A. A transformation that maps the
parameter space into itself is then obtained based upon A. The
transformation leads to new model A which has f(OIA) > f(OIA)
unless A is a fixed point of the transformation. The procedure is
iterated after replacing the old model with the new model, and stops
when a fixed point, which corresponds to a critical point off (OIA), is
reached. The procedure guarantees an increase in likelihood after each
iteration and will converge to a local optimum, when proper densities
are used. The details of the reestimation formulas are given in
Reference Es].

Ill. Implementation of the Model Estimation Procedure

A crucial prerequisite of the entire estimation procedure is a
reliable and meaningful method for initialization. Obtaining such
reliable initial estimates is often non-trivial since tbey are strongly
affected by the prescribed Markov chain constraints. For left-to-right
Markov models, which have been shown to be extremely useful in
speech modeling, a modified training procedure was developed in which
very good initial estimates of model parameters were obtained via a
segmental k-means procedure, and then the formal reestimation
algorithm was used as a model refinement tool [6]. (A segmental k-
means procedure is a k-means clustering procedure operated over
properly selected segments of the training sequence). A block diagram
of this modified training procedure is given in Figure 1. An initial
model A is assumed. This initial model can be chosen via a variety of
procedures including random initial guesses of model parameters
(subject to the required stochastic constraints). Based on the initial
model, each of a set of L training sequences is segmented into the
maximum likelihood state sequence (via a Viterbi decoding procedure).
For each state of the model, a k-means procedure, specifically the LPC
vector quantizer design algorithm [7], clusters all the observation
vectors within that state into a set of M clusters, based on a nearest
neighbor classifier, using the distance measure of Eq. (8). Based on
the vectors within each cluster, the initial estimates of the parameters
of B are given as

= Number of vectors in cluster in, state j
Number of vectors in state j

(7) aim LPC vector corresponding to the centroid
(of the normalized autocorrelation) of cluster in, state j

(8) The transition coefficients, au, are not modified in the segmental k-
means procedure. The new model A = (ir,A,B) is used as the initial
estimate for the model reestimation algorithm which leads to a new A.
A check on model convergence, in which the new model, A, is
compared to the previous model, A, is used to determine if the model
estimation has converged. If no convergence is obtained, a new
iteration of the training procedure is carried out with A A.

(10) Practically we have found that rapid convergence is obtained in all
cases.
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Fig. 1 Block diagram of model training procedure.
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IV. Incorporation of Model State Duration and Log Energy Estimates

For speech recognition applications, it is often desirable to
incorporate state duration and energy information in the model. Thus,
calculation of the likelihood involves evaluation of the following
equivalent distance (besides looking up the state transition probability
matrix):

d(x,LIT,Z;ajm,pj,wj) =k[4o ;a,jm) — ii —

log p (LIT) —. ylog si'1 (s)

where I is the effective length of each data vector, LIT is the fraction
of the word spent in state j accumulated up to the observation of x, P
is the duration probability of state j; Z is the quantized log energy of
the current frame, W1 is the log energy probability of state j, and "ID
and YE are experimentally determined positive scaling constants for the
log probabilities of the duration and the log energy respectively.

The effective length, K, needs further explanation. Speech signal
analysis is generally performed on frames of K samples, with
consecutive frames being taken after a shift of K3 samples. A speech
signal of LT samples is hence segmented into LIK, frames. These
frames are overlapped if the analysis frame size, K, satisfies K > K3.
Then, x is used to represent K samples of the speech signal and
[ô(x;ajm)IK] — 1 becomes the well known likelihood ratio distortion
measure. If we denote this quantity by dLR (x;a1m), Eq. (11) becomes

bim&) (2sr)"V2exp(_KI2)exp{ dj(x;a1,,,)} . (13) _____ _____ ______ _______________________

It is therefore clear that d (x,a1m) can be regarded as the average
cross entropy per sample between the observed vector x and an
autoregressive source characterized by aim. Using Lx,) and La,),

1,2 LTIKS, to denote the LTIK. frames of speech data and
the sequence of autoregressive sources for comparison respectively, we
note that the cross entropy between Lx,) and [a,}, with a memoryless
vector source assumption, is

LTIK, Lr/K,
K3 d1.,(x,;a,) =1(3 [vI(x,;a,) —11

i—i i—I

if the original time scale of the speech samples is to be maintained,
independent of the analysis length K. This becomes more crucial when
an underlying Markov chain, instead of a memoryless source, is
assumed, since the transition structure contributes to the cross entropy.
K in Eq. (12) thus allows adjustment on the relative cross entropy
contributions between spectral parameters and the Markov chain. The
relative rate of information in the model contributed by spectral,
durational and energy parameters, respectively, can therefore be
adjusted by the tbree scaling factors, K, Yv and YE

V. Isolated Digit Recognition Experiments

One direct application of the above modeling/estimation technique
is in isolated digit recognition. To evaluate the performance of the
HMM recognizer with the GAM and PGAM mixture densities, a
series of experiments was run using a database of isolated digits
recorded over standard dialed-up telephone lines. The database
consists of four sets of spoken digits, description of which can be found
in [6].

5.1 The HMM Recognizer

For training the recognizer, for each digit in the training set, the
100 versions were first clustered into 2 sets (of about 50 versions each),
and for each set a left-to-right HMM was designed using the
procedure given in Section III. Thus, the output of the training
procedure was a set of 2 HMM's per digit. Each HMM had N=5
states, with M—5 mixture densities per state for both the GAM and
PGAM models.
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(12)

For testing the recognizer, each of the 20 models (2 models x 10
digits) was scored using a Viterbi alignment procedure to give the
optimal state sequence alignment of the unknown observation sequence
to the input model. The distance measure of Eq. (12) was used to
score the optimal alignment path.

5.2 Experimental Results

Several experiments were run using different training sets, model
types (GAM, PGAM), and choices for YD and YE, the scaling
constants in the distance measure, and the results of these experiments
are given in Table I. Based on preliminary experimentation it was
found that a value of YD 10.0 (with YE = 0) gave the best
performance when duration (without energy) was incorporated into the
distance measure. As such the results in Table I primarily show the
effects of different values of 'y when YD was either 0 (no duration
used) or 10.0 (the best duration scaling value).

The results given in Table I show that the 1) performance of the
two model types (GAM and PGAM) was almost identical across all
test conditions. To gain perspective into how the performance of these
recognizer compares to that of previous HMM recognizer, the bottom
two lines of Table I summarize results from previous work with a
cepstral model using diagonal covariance matrices (CEP/DC) [61. It
can be seen that the best GAM performance is about 1% worse than
the CEP/DC model performance, and the best PGAM performance is
about 1.2% worse than the CEP/DC model performance.

(14)

Training
Set

Model
Type

I

'y YE

Average Digit Error Rate (%)

DIG! DIG2 DIG3 DIG4
Test Ses
Average

DIGI
DIG!
DIG!
DIG!
DIG!

GAM
GAM
GAM
GAM
GAM

0.0 0.0
0.0 3.0

10.0 1.0
10.0 3.0
10.0 10.0

1.2
0.9
0.3
0.3
0.4

3.3
2.3
2.!
1.8
1.2

5.8
4.3
3.7
3.4
3.5

9.2
6.0
5.2
4.1
4.6

6.1
4.2
3.67
3.1
3.1

DIG4
DIG4
DIG4
DIG4
DIG4

GAM
GAM
GAM
GAM
GAM

0.0 0.0
0.0 3.0

!0.0 !.0
10.0 3.0
10.0 10.0

7.1
4.9
5.7
4.9
3.9

7.4
3.9
4.3
3.5
2.9

4.!
3.!
2.7
2.9
3.7

1.7
0.8
0.5
0.5
0.8

6.2
3.98
4.23
3.7
3.5

DIG!
DIG!
DIG!
DIG!
DIG!

PGAM
PGAM
PGAM
PGAM
PGAM

0.0 0.0
0.0 3.0

!0.0 1.0
!0.0 3.0
!0.0 10.0

1.1
1.0
0.7
0.7
0.5

4.1
2.8
2.1
2.0
!.7

5.3
3.8
3.4
3.!
3.6

8.3
6.4
6.0
5.9
5.0

5.9
4.67
3.83
3.67
3.43

DIG4
DIG4
DIG4
DIG4
DIG4

PGAM
PGAM
PGAM
PGAM
PGAM

0.0 0.0
0.0 3.0

!0.0 1.0
10.0 3.0
10.0 10.0

7.0
5.3
5.3
4.9
3.4

7.3
4.9
4.2
3.4
2.9

4.0
2,9
3.2
2.3
3.7

1.6
1.4
1.!
0.8
1.0

6.!
4.33
4.23
3.53
3.33

DIG!
DIG4

CEP/DC !0.0 =
CEP/DC 10.01 =

0.1 0.7
2.5 1.7

2.8
2A

4.2
tL8

2.57
1!

Table I

Comparison of Perfonnance of the HMM Recognizer as a function
of the Training Set, Mode! Type, Yo and Ya
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5.3 Computational Complexity

The computation required in the recognizer, using a Viterbi
decoding algorithm, is

C NT(p+l)MV multiplication/addition operations
for a V word vocabulary, average word length T frames, N states per
model, M mixtures per state, and pth order LPC representation.

A standard DTW recognizer requires

CDTW QV 2j_ (p+1) multiplication/addition operations

for a Q template per word system. The ratio of computation is thus

Cv NMRATIO—=
CDTW QT/3

which for N = M 5, Q = 12, T 40, gives
5 1RATIO——=—
32 6.4

i.e. a 6.4 to 1 reduction in computation is achieved for the LPC 11MM
recognizer over the standard DTW recognizer.

The computational advantage of LPC HMM over CEP/DC is
mainly in the distortion computation. LPC HMM requires
computation of a dot product as in Eq. (9), while CEP/DC requires
computation of a weighted Euclidean distance. Practically speaking, of
a reduction in computation of from 2 to 4 can be achieved.

VI. Discussion and Summary

We have shown that the ubiquitous LPC analysis technique can be
consistently welded into the general hidden Markov model
methodology. The resultant autoregressive HMM's are powerful for
modeling time-varying signal sources. For short speech signals such as

discrete digit utterances, however, such an extensive stochastic
modeling may not be necessary. A simple segment registration
procedure may be adequate in coping with the sequentially changing
characteristics of speech. We have also demonstrated how the two
procedures, namely the segmental k-means and the probabilistic
Markov chain, can be successfully combined. Since the segmental k.
means procedure gives good, initial model estimates, the models
resulting from reestimation always worked well in practice.
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