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Abstract 
A new iterative approach for hidden Markov modeling 

of information sources which  aims at minimizing the 
discrimination information (or the cross-entropy) between  the 
source and the model is proposed. This approach does not 
require the commonly used assumption that the source to be 
modeled is a hidden Markov process. The algorithm is 
started from the model estimated by  the traditional maximum 
likelihood (ML) approach and alternatively decreases the 
discrimination information over all probability distributions 
of the source which agree with  the  given measurements and 
all hidden Markov models. The proposed procedure general- 
izes the Baum algorithm for ML hidden Markov modeling. 
The procedure is shown to be a descent algorithm for the 
discrimination information measure and its local convergence 
is proved. 

1. Introduction 
Commonly used approaches (e.g., see [1]-[2]) for hidden 

Markov modeling of information sources assume that the 
observations were generated by some hidden Markov source, 
and attempt to find a maximum likelihood (ML) [l] or a 
maximum mutual information ("1) [2] estimate of the 
parameters of that source. This assumption is, however, not 
necessarily true, especially for speech signals for which hid- 
den Markov models (H" ' s )  have been recently extensively 
applied. 

We propose an alternative approach for doing the 
modeling in which the model and the observations are 
matched in an information thwretic way. We do not assume 
that the true probability distribution (PD)  of the source to be 
modeled is that of a hidden Markov source or has  any other 
explicitly given form, as this PD is unknown. The idea here 
is first to find a PD for the source which agrees with the 
given measurements and is optimal & the sense of minimiz- 
ing the discrimination information with respect to the 
E I " .  Then, the resulting minimum discrimination informa- 
tion (MDI) measure, which depends on the given observa- 
tions and the model's parameters, is minimized over all 
H " ' s .  

Unfortunately, in the case of hidden  Markov modeling 
the resulting MDI  measure cannot be made explicit and it is 
implicitly dependent on  the Lagrange multipliers correspond- 
ing to the measurements. We therefore have designed an 
iterative descent algorithm for implementing the MDI model- 
ing. We start from the hidden Markov model estimated from 
the ML approach, and alternatively decrease the discrimina- 
tion information over the PD's of the source and the model. 
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For a given H M M ,  we minimize the discrimination informa- 
tion over all PD's for the source which are consistent with 
the measurements. Then, we fix the PD  of the source and 
estimate an H" which decreases the discrimination infor- 
mation with respect to the given  PD. Thus, each iteration 
produces a new H" for the source with a lower (or at least 
the same) discrimination information for the given measure- 
ments. 

In particular, we consider the class of H " ' s  for which 
the output process from each state is a zero mean Gaussian 
process. Such models will be referred to as zero mean Gaus- 
sian HMM's. In addition, we shall be focusing on the subset 
of AR processes of this class, which have been shown to be 
useful in speech recognition applications. These models will 
be referred to as zero mean, Gaussian, AR H M " s .  

We show that given an H " ,  the estimation of the  PD 
of the source, which agrees with the given measurements, 
can be formulated as a minimization problem, which  can  be 
implemented by any standard optimization procedure in the 
Euclidean space. In addition, given a PD for the source, the 
estimation of the model's parameters can be done by a pro- 
cedure similar to that of Baum [l], using the Forward- 
Backward formulas. Thus, despite the rather more compli- 
cated modeling approach used here as compared with the ML 
approach, the efficiency of the original Baum algorithm is 
maintained; However, an additional optimization procedure 
which compensates for the existing "mismatch" between the 
measurements and the model, is performed. 

The global convergence of procedures for alternating 
optimization of the discrimination information measure has 
been studied by Csiszar and Tusnady [3]. They gave 
geometric conditions for convergence and proved that these 
conditions are satisfied if both classes of PD's of  the source 
and model are convex. In our case, however, the set of 
H " ' s  is not convex and the verification of the geometric 
conditions for convergence is not straightforward. We there- 
fore prove local convergence using a variant of the classic 
convergence theorem of Luenberger [4]. 

Proofs of theorems, lemmas, and corollaries are not 
given here and can be found in [SI. 

2. Descent algorithm for MDI modeling 

2.1 Problem  Formulation 
Let { y o ,  y 1  . . , y ~ )  be a set of observations, 

yt E RN, where, R~ is the N-dimensional Euclidean space. 
Assume that each observation Yr has zero  mean  and that it is 
characterized by a set of covariance samples given by 

RAi, j )  = E&r(i) M ) ) ,  i, j E B (1) 
where B i s  any symmetric band of the original covariance of 
yt and Q is the true PD of { y o ,  y 1  , . . . , y ~ } .  We assume 
that  the given covariance R, at each time t is consistent with 
some N x N  valid covariance matrix called an extension of R,. 



If this extension is positive definite, then it is called a posi- 
tive definite extension. 

Let P h  be the PD of  an M state, zero mean, Gaussian 
H ” ,  and p h ( z )  be the corresponding pdf. h2(n, A, S) is 
the parameter set of the HMM, where, 
n= nl ,  n2, . * 1 ,n~), is the vector of initial probabilities; 
A *L - { a ,  p}, a, p=1, . . 1 ,M, is the transition matrix;  and 
S 2 {Sp, p=l, ..., M }  is the set of positive definite covari- 
ance matrices of the output processes from the different 
states. 

T 
P h ( Z )  = c n ax,-pC,b (z t  I X A  (2) 

x t=O 

where, b(zt Ix,) is the output pdf  on R N  corresponding to the 
state x,, 

b(Yt Ix, = p) = 
( 2 ~ ) ~ ’ ~ d e t ” ~  

p=1, 2, ... ) M; 
(Sp) ’ 

axL-lx, is the transition probability from the state x,-l at time 
t-1 to the state x, at time t, and xl€{l ,  2, ..., M }  for every 
t=O, 1, ..., T; ax_,,, nxxo is the probability of the initial 

spose; and the summation in (2) is taken over all possible 
state XO; z ( z o ,  z 1  , . . . , zT)’ with # being vector tran- 

sequences of x ) { x o ,  x1 , . . . , xT}.  
Let Q ( R )  be the set of all PD’s Q which satisfy the con- 

straints (1), where, R ) {R,, t=O, ..., T } .  The modeling 
problem is that of finding the parameter set h = (x, A,  S) 
which minimizes the ME1 measure  given by 

where, D (Q 11 P; i )  is the discrimination information between 
Q and P A .  The discrimination information between  two PD’s 
Q and P ,  with pdf‘s q and p ,  respectively, can  be evaluated 
as 

D tQ I I  P )  = j q ( Y )  ln(qb)/p(y))  dr (4) 
with the convention that In 0 = -M, ln(cl0) = 00, where c is 
any positive number, and 0 In 0 = 0. 

2.2 Estimation of the  source  PD 
The definition of the  MDI  measure (3) incorporates an 

infimum rather than a minimum, since the minimum may  not 
exist. The following theorem, however, provides conditions 
for the existence of a PD which minimizes the discrimination 
information with respect to a zero mean Gaussian HMM over 
all PD’s which agree with the given  second order statistics of 
the source. The theorem, and its proof, are a straightforward 
extension of the results developed by Csiszar [6] ,  and by 
Gray et a1 [7] for the case where the model is a single Gaus- 
sian process. 

Theorem I :  Let P h  be a zero  mean Gaussian H” as 
in (2), R){R, ,  t=O, ..., T }  be the sequence of given covari- 
ance matrices for a zero  mean source, and Q ( R )  be the set of 
all PD’s Q which satisfy (1). 
(a) If for some t ,   R,  does not have any positive definite 

extension, then D(QI1Ph)- for all QE Q ( R )  and hence 

(b) If each R, has any positive definite extension, then there 
exists a unique sequence of matnces 
A ) {At, t=O, ..., T } ,  where A, is symmetric and van- 
ishes outside the band B,  such that Spl+At is positive 
definite for every t=O, ..., T and p=1, ..., M ,  and the pdf 

v ( R ,   P h )  = 00. 

qxb) = C P ; I ( Y )  exp 

yields the MDI measure given by 
T 

v (R ,   Ph)  = - In [z pI ~,,,,,det-”~(”S,~A~)] 

1 
x .r=o 

- Z(RT&).  (6 )  
2 

C is a finite normalization factor. The PD Q x  which 
corresponds to q h  is called the MDI PD with  respect to 
P x .  In this case, the  infimum  in (3) is a minimum and 

The set of Lagrange multiplier matrices A can be 
obtained from the unique solution of the following equation 
set  which must be satisfied within the  band B. 

v(R, Px)=D(€!x II Ph) .  0 

Rt 2 EQh{Yr Y f i }  
M 

= c %(a, P)(spl + (7) 
a, p =  1 

where, 

c fI axT.lx.idet-1/2 (1 + S x ,  A T )  

{x:  x,  = p} 

a, p =  {x: x, = 

x,-i = a .r=o 

qtta, P)& M T (8) 
z c n axT-lxz  def1I2 (1 -I- 

XL-1 = a -0 

These equations, however, are difficult to solve in any 
straightforward manner.  The following corollary of Theorem 
1 provides an alternative way  to evaluate the MDI measure 
by replacing the algebraic problem in (7) by a minimization 
problem which can be iteratively solved by any standard 
minimization procedure. 

Corollary I: Let R and P be  as  in Theorem 1. Let 
Y = {Yl,  t=O, ..., T }  be a sequence of symmetric matrices 
which vanish outside the band B. Define 

T 
d ( R ;  Y, h) = In [~~ax,lx,det~1’2(1+SxrYu,)l 

x T=o 
1 

+ -E X(RTY.r). (9) 

If each R, has a positive definite extension, then 
v(R, P h )  = - d ( R ;  A,h) = - min d ( R ;  Y ,h)  (10) 

The MDI measure (6) cannot be made explicit in  terms 
of the given measurements R and the parameters of the 
HMM h. Hence, MDI hidden  Markov modeling cannot  be 
implemented as a direct minimization of the MDI measure 
over all H ” ’ s .  The MDI modeling can, however, be itera- 
tively performed when  starting from some initial H” .  Each 
iteration consists of first estimating the MDI PD with respect 
to the given HMM, as outlined above, and  then improving 
the model by decreasing the discrimination information  with 
respect to the estimated MDI  PD. We now  show  how a new 
H” is estimated given an MDI PD with respect to the old 
H ” .  

2.3 Hidden  Markov  modeling 
Suppose that Q h ,  the MDI PD  with respect to P A ,  has 

been estimated. Let h’ be the parameter set of the new HMM 
to be estimated. Since 
D ( Q h  II PL’) = IqxCY)  In ( ~ ~ ( Y ) I P L , ( Y ) )  dy, and Q L  is 
given, the minimization of D (Q 1’) over all Pxj’s is 
equivalent to maximizing $(X/) !/;h(y) In (y) dy over 

Y 

1.8.2 
26 



all Phpfs .  Let p x ( y )  & C P ~ ( X ,  y ) ,  where ph(x,  y )  is the 

joint pdf of x and y as  given in (2). Using Jensen’s inequality 
we have that 

X 

@(Xf  ) - to“) = I4xcy) In c P h f  (x9 Y ) / C P h ( X >   Y )  dY 
X X 

where equality holds if and only if pr (x, y )  =ph(x ,  y )  almost 
everywhere with respect to Qx (a.e. Qn). Hence, the value of 
@ ( X f )  can be increased by 

I 

we arrive at the following maximization problem 

max C, j q h ( x ,  z) l n p h f  (x, z) dz. (14) 
hf x 

The function to be  maximized in (14) plays here the 
same role as the auxiliary function proposed by Baum in the 
ML estimation of the parameters of H M ” s  [I]. There the 
problem is 

max c P h k  Y )  In P h f  (x, Y )  , (15) 
h’ x 

where y are the observations from the source. Comparing 
(14) and (15) shows that the MDI and the ML hidden  Mar- 
kov modeling approaches result in the same model estimate 
if and only if 

4 k ( X ,  z )  = P h h  Z)6(Z-Y), (1 6) 
where 6(.) is the D i m  function. This happens when the 
source producing the observations is the HMM itself whose 
parameters are being estimated, since then the MDI PD is the 
PD of the model and the resulting MDI is zero. 

On substituting (2) into (14) we obtain 

m a  { 2 ln 4 c I 4 h k  Y )  dY 
hf p = 1  {x :  XO+} 

+ c In adp c c I 4 h ( A  Y )  dY 
M T 

a, p =  1 t=l { x :  x,-1 = a} 

x, = P 

p=1 t=O { x :  xr = p} 

k Rt(P). (1% 
Hence, using (18) and (19) we can rewrite (17) as 

The maximization of (20) over x‘p results in 

= qo(a, p), P=1, ..., M. (21) 
Similarly, the maximization of  (20) over a& p results in 

T c PI 

C C 4t(% PI 
‘dp = M T 

t=l 
, a, p = 1, ...., M ,  (22) 

p=1 t=l 
M T  

provided that qt(a, p) > 0. If not, then 
T p=1 t=l 
C, qt(a, p) = 0, and a&, p can be arbitrarily chosen since its 
t=1 
value does not affect (20). The maximization of (20) over Si 
is conside e for zero mean Gaussian AR H “ ’ s .  Suppose 
first that qt(a, p) > 0. The problem then becomes 

a &  
t =oa=l 

min { tr [R (p) S[ ] - In det S:}, (23) 

where, R(p)  is a positive definite covariance matrix defined 
by 

A t=O R ( P )  = T M , p=1, ..., M .  (24) 
C z 4t(a, P) 
t =oa=l 

This is exactly the problem arisen in ML estimation of struc- 
tured covariance matrices given a measured covariance 
matrix [SI. In our case we are interested in estimating the 
covariance matrix Si of  an r-th order AR process given 
R (p). S i  is given by Si,=o$(L#pLp)-’, where, op is a gain 
constant, Lp is a lower triangular matrix given by 

i,j=o, 1, ...., N-1} 
(i - j )  O I i  -j<r 

otherwise, 

fp(O)=l,  andfp(i), i=l, ..., r, are the coefficients of the AR 
process. Since R(P) is positive definite, the set of all AR 
matrices Si is a closed subset of the set of positive 
semidefinite matrices, and the set of all inverses of AR 
matrices is convex, there exists a unique positive definite 
matrix S’p which minimizes (23) [X]. Since det Lp=l, the 
coefficients f p ( - )  are obtained from the minimization of 
tr (R(p)LffLp). From [7, Corollary 21, this is done by minim- 
izing the quadratic form 

r r  1 N-1 
E 4 Xfp(n)fp(m)- x rp(k-n, k-m) (25) 

n =Om =O k=max (n. m) 

where rp(.;) are the elements of R@). This results in a 
linear set of equations similar to that obtained in the “covari- 
ance method” for linear prediction analysis. The gain which 
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minimizes (23) is easily shown to  be c$=E. 
T M  

If Cqr(a, p) in (20) equals zero, then ql(a, p) = 0, 

and therefore from (19) R,(P) = 0. Hence, S i  can  be arbi- 
trarily chosen since its value does not affect (20). 

We now  show  how qf(a, p) can be efficiently calculated 
using the forward-backward formulas. Define 

I =Oa=l 

Fr(a) $ C. axT-lx, det-”2(1 + Sxx&) (26) 
Jxo I . . . 9 x , - l l  T=a 

3. Convergence analysis 
Suppose that  each  given covariance matrix for the 

source has a positive definite extension. Let P h  be as above 
the PD  of a given model, and Q h  be the MDI  PD  with 
respect to P h .  Then, for any  PD QE a ( R )  we have the fol- 
lowing inequality. 

D (Q I I  Px) 2 D ( Q  h II PL) = V(R, Px). (3 1) 
where, due to the uniqueness of Q h ,  equality holds if and 
only if Q = Qh.  Now,  given Q h ,  the new model P y is 
chosen so that 

D ( Q h  I I  P L )  2 D &?I, I I  P x ) .  (32) 
Since 

D ( Q h  II P h ) - D ( Q h  I I  P r ) = I d y q n ( Y ) l n ~ h , O l ) I ~ l O l ) ,  (33) 
equality in (32) holds if and only if p 1 = p ax. Q x .  Com- 
bining equations (31) and (32)  we obtain the following ine- 
quality. 

v(R,  P h ) = D ( Q h  I I P X ) ~ D ( € ? ~ .  IIPh’) (34) 
2 D ( Q x  11 Ph, )  = v(R,  Ph,) .  

Thus, the MDI measure associated with the new model Ph’ 
is lower than or equal to that associated with the initial 
model P h .  If v(R,  P 1) = v(R,  Pr), then from (34)  we have 
t h a t D ( Q h I I P h ) = D ( Q h I I P h ‘ ) = D ( Q h , I I P h , ) ,  whichby 
(3 1) and (32) implies that p h = p ax. Q h. 

Based on this discussion we have the following lemma. 
Lemma 1: Assume that  each  given covariance matrix for 

the source has a positive definite extension. Let Ph be a 
given H ” ,  Q h  be the MDI PD with respect to P h ,  and 
P y be an estimated new  HMM. Then 

v (R ,   Ph)  2 v(R,  Pr) (35) 
and equality holds if and only if p h = p ax. Q A. 0 

Lemma 1 shows that the algorithm generates a sequence 
of H ” ’ s ,  say Phn,  for which v(R, P L )  is a strictly 
decreasing sequence, unless v(R, Ph,,, ) = v(R,  P ha). In the 
latter case p h ,  = p ~ ” , ~  a.e. Q h n ,  where Qhn is the MDI PD 
with respect to Phn,  and a fixed point of the algorithm is 
reached. Since v(R, Ph,) 2 0, the limit lim v(R,  P h n )  exists. 
Unfortunately, however, this neither guarantees the conver- 
gence of  the model sequence Phn to a fixed point, nor  that a 
fixed  point should ever be reached. Hence, convergence of 
the model sequence should be examined. Note that since  each 
HMM is a continuous function of h (see (2)), and  the 
corresponding MDI PD is a continuous function of h and A 
(see (5)) ,  convergence can  be  equivalently considered in 
terms of either (Phn. exn) or (Xn, Ah,). 

n+ 

Let 

Upx,): Ph. + ( p ~ , ,  exn) (36) 
be the “point-to-point” mapping from the model Phn to 
itself  and its MDI PD ex,. This mapping is exactly deter- 
mined  by the procedure provided by Corollary 1. Let 

P(PX.> Qx.1: (Ph.7 QL,)  +PAn+, (37) 
be the “point-to-set” mapping from the pair of PD’s 
(P Q h,) to the set of Qhn equivalence models P h,,, . Each 
of these models results from the maximization of  the follow- 
ing function 

g(Ahn, $ x !qh,(x, z) In p (x. z) dz (38) 

over all h,+l, as is required in (14). As we have  shown  in 
Section 2, this maximization reduces the value of the MDI 
measure with respect to Qh,. The algorithm is  now  defined 
as the composition of these two mappings as follows. 

X 

TR(phn):  pk+phn+,,  and TR(Ph,) = p(C(Ph,)). (39) 
We have the following theorem. 

Theorem 2 :  Assume that  each  given covariance matrix 
has a positive definite extension. Let P h  be  an initially 
given zero mean Gaussian AR HMM, and let 
P L ~ + , E T R ( P ~ , ) ,  n2O. Let r 4 { P h :  p h  = T ~ ( p h )  a.e. Q h >  
be the set of fixed points of T R ,  where Q is the MDI PD 
with respect to P A .  If all parameters of  AR models generated 
by TR are in a compact subset of the Euclidean space, then 
(i) Each accumulation point Ph* of P L  is a fixed point, 

(ii) p(Ph,, r)+O, where p is the usual distance in the 

(iii) v(R, Phn)+v(R, Ph*) .  

tionary point of v(R,  P h )  [5]. 

is . ,  P 1. E I-. 

Euclidean space. 

It can also be  shown  that  any  fixed  point  of TR is a sta- 
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