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Abstract 
We investigate the performance of a recent algorithm 

€or linear predictive (LP) modeling of speech signals, which 
have been degraded by uncorrelated additive noise, as a 
front-end processor in a speech recognition system. The sys- 
tem is speaker dependent, and recognizes isolated words, 
based on dynamic time warping principles. 

The LP model for the clean speech is estimated through 
appropriate composite modeling of the  noisy speech. This is 
done by minimizing the Itakura-Saito distortion measure 
between the sample spectrum of the  noisy speech and the 
power spectral density of the composite model. This 
approach results in a “filtering-modeling” scheme in which 
the filter for the noisy speech, and the LP model for the clean 
speech, are alternatively optimized. 

The proposed system was tested using the 26 word 
English alphabet, the ten English digits, and the three com- 
mand words, “stop,” “error,” and “repeat,” which were 
contaminated by additive white noise at 5-20 dB signal to 
noise ratios ( S N R ’ s ) .  By replacing the standard LP analysis 
with the proposed algorithm, during training on the clean 
speech and testing  on the noisy speech, we achieve an 
improvement in recognition accuracy equivalent to an 
increase in input SNR of approximately 10 dB. 

1. Intl‘QdUCtiQJl 
The problem of speech recognition in noisy environ- 

ments has recently attracted the attention of many speech 
researchers. The reason is that existing speech recognition 
systems, which perform reasonably well  in a clean or labora- 
tory environment, fail under conditions in which  high level 
noise is present at the recognizer input. The noise  can  be 
picked up at the source location and/or in the channel  which 
connects the speaker and the recognizer. The first case may 
be more difficult to handle, since in the presence of high 
ambient noise the utterances to be recognized are pronounced 
differently than in a clean environment in which the recog- 
nizer is usually trained. This condition leads to a further 
mismatch between the input utterance and the corresponding 
stored reference pattern. Typical noise sources of interest 
include fans in an  office environment, traffic in mobile radio 
communication, engine noise in aircraft communication, and 
channel noise over the long distance switched telephone net- 
work. 

In general there are three main approaches to speech 
recognition in noisy environments. The first is to make exist- 
ing speech recognition systems, which  have proved to per- 
form successfully in a laboratory environment, immune to 
noise. The second is to design  speech recognition systems 
which are inherently robust to input interference, The third, is 

to train  the recognizer in an environment similar to that of 
testing. The first approach is accomplished by taking into 
account the noise presense in estimating the feature vector. 
The second approach is far less understood  and will probably 
require using different feature vector and/or distortion meas- 
ure then those commonly used. The third  approach has the 
obvious disadvantage that it requires training in an environ- 
ment similar to that of the test. 

The work presented in this paper belongs  to the fist  
category of speech recognition approaches. We use  an LPC- 
based, dynamic time warping, speaker dependent, isolated 
word, speech recognition system [l], and examine the perfor- 
mance of a recent algorithm [2]  for autoregressive (AR) 
modeling of the original speech given  noisy speech. This 
algorithm was derived using minimal assumptions about the 
source and the noise statistics and therefore is attractive in 
speech recognition applications. Specifically, we assume that 
the noise is additive and uncorrelated with the source, and 
that the noisy source is quasi-stationary, We, however, do not 
require exact knowledge of the probability distribution (PD) 
of either the source or the noise, nor that the original speech 
has the structure of the AR model. The modeling is entirely 
based on the sample spectrum of the noisy source, similar to 
the way that LP modeling of clean sources only uses the 
sample spectrum of the original source. Note  that since the 
noise is assumed to be additive and uncorrelated with the 
source, our work applies better to channel noise rather than 
to source noise, since the pronunciation effect mentioned 
above is ignored here. 

The proposed algorithm estimates the AR model of the 
original source through an appropriate composite modeling of 
the noisy source. The composite model consists of  an AR 
model for the source and an additive parametric model (e.g., 
moving average (MA)) for the noise. The modeling is 
achieved by minimizing the Itakura-Saito distortion measure 
between the sample spectrum of the  noisy source and  the 
power spectral density of  the composite model, over all 
parameters of the source and  the noise models.  This results 
in a “filtering-modeling” scheme in which  the  filter for the 
noisy speech, and the AR model for the clean speech, are 
alternatively optimized [2]. The Itakura-Saito distortion meas- 
ure was chosen since it is an information theoretic distortion 
measure for sources  which are not strictly stationary and 
autoregressive moving average (ARMA) composite models 
which are of interest in this work [3]. 

The above algorithm was used to recognize spoken  ver- 
sions of the 26 word English alphabet, the ten English digits, 
and the three command words, “stop,” error,” and 

repeat,” which were contaminated by additive white  noise. 
The alphabet vocabulary was chosen since it contains highly 
confusable sets of words which make the recognition task 
non-trivial and therefore sensitive to  noise. White noise was 
chosen, since it is believed to be the most harmful noise for 
recognition, as it equally attacks all the frequency com- 
ponents of the speech. The variance of the noise was adjusted 
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to a fixed value across each word. This results in words 
which are degraded by uncorrelated stationary noise with 
some overall SNR. Noisy speech  with overall SNR of 5, 10, 
15, and 20 dB was examined. 

Three cases, which differ in the way the AR models of 
the speech were estimated during training and testing, to pro- 
duce templates and test patterns, respectively, are considered. 
In all cases the templates were generated from clean speech 
and testing was done on noisy speech. In the fist  case, stan- 
dard LP analysis (e.g., the Levinson algorithm [4]) was used 
in generating both the templates and the test patterns. In the 
second case, standard LP analysis was used to generate the 
templates, and the proposed algorithm was used in generating 
the test patterns. In the third case, the proposed algorithm 
was exclusively used in generating both the templates and the 
test patterns. The first strategy corresponds to ignoring the 
noise presense in the input signal and applying the recognizer 
as if the input speech is clean. This strategy results in the 
worst recognition accuracy. Comparing with this case, the 
second and the third strategies provide improvement in 
recognition accuracy equivalent to an increase of about 5 dB 
and 10 dB, respectively, in input SNR. 

2. AR modeling  algorithm 
Let Y=X+V, where X ,  V, and Y denote, respectively, the 

K-dimensional random vectors of the source, the noise, and 
the noisy source. Let Ye be the Fourier transform of Y. Let 
$ / I A e I ' denote the power spectral density of an AR model 
for the source. A B  is the Fourier transform of the sequence 
{ l , a l , a2 ,  . . * ,ap} which, together with o, constitute the 
parameters of the AR model. Let fe be the power spectral 
density of the noise model. fe is assumed to be dependent on 
a finite number of parameters Cfo,f1, + . ,f,). For the case 
of white noise, which is of interest here, fe=h, a constant. 
Assume that the sample spectrum of the noisy source, I Ye I ', 
is smctly positive on OI612.n. The modeling problem, as for- 
mulated in [2], is that of finding $/ I A 8 I ' and f e  (or 
equivalently their respective parameters) which minimize the 
Itakura-Saito distortion measure between the sample spectrum 
of the noisy source I Y I ' and the power spectral density of 
the composite model c?/ IA e 12+fe. This distortion measure 
is given by 

and it is proven in [2] that it achieves its minimum by some 
composite model. 

The modeling is performed as follows. We first define a 
filter 

where 0% / I A t  I is defined similarly to $1 I A e  I but the 
two power spectral densities are not necessarily the same, 
and rewrite (1) as 
d (  IYe 1 2 ,  02/ IAe 12+fe) 

=d(IYeI2IHeI2 ,  C ? / 1 A g 1 2 ) 1 ( J ~ , ~ ~ ~ ~ ~ = ~ z , ~ ~ e 1 2 . ( 3 )  

Now  we focus on d(lYeI21Hel2, 0 2 / I A e  1 2 )  and alterna- 
tively minimize it once over all filters of the class (2)  assum- 
ing that  the AR model is given, and then over all AR models 
assuming the filter is given. The minimizing filter obtained in 
this way satisfies the constraint in (3) [2]. Each of these two 
phases reduces, or at least does not increase, the value of the 
distortion measure and thus a descent algorithm results. 

When the AR model 02/ I$ e I is given, the filter 
which minimizes d( I Ye I ' IHe I , o2 / IAe I '), called the 
minimum distortion filter, is given by [2] 

where J"e satisfies 
d(lYel ' ,  $ / I A ~ I 2 + $ ) = i n f d ( I Y ~ l 2 ,  o2 / IAe l '+ fe ) . (5 )  

f e  
Such a filter is guaranteed to exist for MA,  AR and ARMA 
noise models; however, it might not be unique. In this case 
we apply an arbitrary selection rule to choose one filter from 
all possible minimum distortion filters and consider a 
"poiint-to-set" 
v(02/ IAe 1'): o'/ IAB 12-+{v1(02/ IAB l')}, from the given 
AR model to the set of minimum distortion filters. When the 
filter IHe I ' is iven, the AR model which minimizes 
d ~ l Y a l 2 l H n l 2 ,   $ / l A ~ l ' )  is the uniaue stable linear 

mapping, 

predictive hodel for t h e  linearly filtered  noisy source 
IYe I' IHe 1'. Let this model be denoted by p( IHe 1 2 ) .  Com- 
bining the above two steps we have the algorithm 
Ty: ($1 IAe I*) -+ p(v(o'/ IAe 1 2 ) )  which generates a 
sequence of AR models when starting from some initially 
given AR model. 

Let 
p(lYe12, G 2 / I A e I 2 )  3d(IYel2Vl(  o2/IAeI2), $ / I A e I ' )  

=d(IYeI2, $/IAe12+d) (6) 
be the distortion which is associated with each generated AR 
model and the corresponding optimal filter for that model. 
Then, the formal statement of the algorithm is as follows. 

The fixed point algorithm 
(0) Initialization: Given a sample spectrum 

{ IYe 1'>0, 01612n}, an initial AR model (a'/ IAe l')o, 
and a threshold 0 0 ,  calculate p( IYe l', ($1 IAe 1 2 ) o )  
and set m=l.  

(1) Given (0'1 I A e I ')m-l, calculate 

(a2/ IAe 1 2 ) m  = Ty1((o2/ IAe 12)m-1) = Ty1"((02/ IAe 1 2 ) o )  

where, Tyl (.)E Ty(.). 
(2) Compute p(lYe 1 2 ,  (02/ 1.40 l'),). 

(3) If 
p(lYe 1 2 ,  (02/ IAe  1 2 ) m - l )  - p(lYe 12, (02/ IAe l'),) I E 
stop. Otherwise set m+m+l and go to (1). 
The convergence of the model sequence (2 / I A e I '),, 

generated by Ty, to the set of fixed points of this mapping is 
proved in [2] provided that the sequences of vector parameter 
corresponding to the source AR model  and the filter model 
are in a compact set of the Euclidean space R p ' l x R  q + l .  

The fixed point algorithm was implemented in the fre- 
quency domain using the FFT algorithm. It was tailored for 
white noise whose power spectral density is modeled by a 
constant h. For a given AR model C? / I Ae  12, the minimum 
distortion filter was obtained by minimizing 
d( I Ye I ', $ / I A 0.1 '+A) over all 2h20 using the Fibonacci 
approach. For a given filter IHe I , the LP coefficients were 
estimated f$om the sample correlation obtained from 

I Ye I' IHe I , by the "autocorrelation approach" [4]. The 
Itakura-Saito distortion measure was calculated in the fre- 
quency domain using simple numerical integration. 

An FFT of 1024 points was used in all of our experi- 
ments in order to prevent aliasing in calculating the sample 
correlation of the linearly filtered noisy signal I Y e I I H e  i2 
when frames of 300 samples and AR models of 8-th order 
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are used  (see Section 3), and also for achieving reasonable 
accuracy in calculating the Itakura-Saito distortion measure. 

The initial model used  here is naturally chosen  to  be the 
AR model (02/ IAe I ‘ ) N  which is directly obtained from the 
noisy source. However, in order to prevent the algorithm 
from converging to a fixed point in which I f f 0  I2f1, we 
excluded the noise model h=O from the set over which the 
filter for the initial model (but not for subsequent models 
generated from the given initial model) is optimized, i.e., the 
initial filter was optimized over ?2co>O. Furthermore, the 
value of co was experimentally chosen so that a “good” ini- 
tial filter results. Specifically, cg  was determined in accord- 
ing with the dynamic range 6 of the initial model as follows: I 2 for OGk10 

cg /oi = 1 for 1026<60 (7) 

0.1 for 6016 

The dynamic range 6 is defined as the ratio between the aver- 
age power in the M highest energy bands and the M lowest 
energy bands of (02 I I A e  I 2 ) ~ .  We used 32 equally spaced 
frequency bands on 019% and chose M=8 when an FFT of 
1024 points was used. The rule of (7) was motivated by the 
interpretation of the dynamic range as  an estimate of the seg- 
mental S N R  and by the fact that for high SNR we wish to 
start the iterative procedure with a filter whose spectrum is 
close to unity, while for low SNR the initial filter should be 
such that it strongly affects the noisy input. The specific 
values and ranges which appear in (7) were experimentally 
determined. 

3. Speech recognition system 
The speech recognition system used in our experiments 

is completely described in [l], [5] and its main features will 
be summarized here for completeness. Figure 1 shows a 
block diagram of the recognizer in its training and testing 
modes. The clean analog speech, recorded over a local 
dialed-up telephone line, is first bandpass filtered  to 100-3200 
Hz and then sampled at 6.67 kHz. The digitized clean speech 
was manually endpointed to determine the boundaries of each 
word. The endpoints obtained in this way were used  in  all  of 
our experiments including those in which noise was added to 
the signal. In this manner  we eliminate the effect of errors in 
endpoint detection on the recognition accuracy and focus 
only on the recognition process itself. For each word, 8-th 
order AR modeling is applied to 300 sample frames of the 
digital signal. Adjacent frames overlap by 200 samples. The 
AR modeling is either done by the “autocorrelation method” 
[4] or by the fixed point algorithm, as discussed in Section 1. 
Neither windowing nor pre-emphasis was applied in either 
case. The fixed  point algorithm was applied using a stopping 
threshold of ~ 4 . 0 1 .  The algorithm usually converged in a 
few iterations. For example, for 0 dB segmental SNR, con- 
vergence is achieved in less than three iterations on average 
[2]. The LP coefficients obtained from each analysis frame 
are transformed into cepstral coefficients using the well 
known recursion given in [4, p.  2301 and then windowed by 

l+OSLsin(~k/L) 1SK.L 
w(k) = b (8) 

otherwise, 

where L=12, as proposed in [SI. The windowed cepstral 
coefficients constitute the feature vector in our recognizer and 
the distance measure used here is the  usual Euclidean dis- 
tance in the cepstral domain [5]. 

The recognizer is trained to give two templates for each 
word from a five  token training set using a variant of the  K- 
means or the generalized Lloyd clustering algorithm [6]. The 
distance per word is thus considered as the minima1 distance 
to the two templates. Given the templates for each word, the 
recognition is done using standard dynamic time warping 
techniques. 

ecsgnition results 
The speech recognition system described in Section 3 

was used to recognize spoken versions of the 26 word 
English alphabet, the ten English digits, and the three com- 
mand words “stop,” “error,” and “repeat,” which were 
artificially contaminated by uncorrelated, additive, zero  mean, 
Gaussian white noise.  The statistics of the noise were  arbi- 
trarily chosen and its specific form does not effect the perfor- 
mance of the fixed point algorithm as  we have argued  and 
demonstrated in [2]. The recognition results were obtained 
from four talkers (two females and two males), each speaking 
the 39 word vocabulary 15 times in  random order. Five repli- 
cations were used for training  and the remaining ten repeti- 
tions were used for testing. Tables 1-3 and Figures 2-4 show 
the recognition accuracy obtained for each  of the three cases 
discussed in Section 1. The results are separately given for 
the alphabet, the digits, and for the entire 39  word  vocabu- 
lary. Each recognition score in these tables and figures 
represents the average accuracy obtained for the four talkers. 
The following notation is used. 

SNR-input SNR of the tested  speech. 
CSS-templates were generated from clean speech, and 
test patterns were generated from noisy input speech,  at 
the indicated SWR’s (W corresponds to clean speech), 
using the same standard LP analysis. 
CSF-templates were generated from  clean  speech using 
standard LP analysis. Test patterns were generated from 
noisy input speech, at the indicated SNR’s, using the 
fixed point algorithm. 
CFF-templates were generated from clean speech, and 
test patterns were  generated from noisy input speech, at 
the indicated S N R ’ s ,  using  the  fixed  point algorithm. t i  
CFF 84.7  93.5  97.5  99.7  99.7 

Table 1: Digit  recognition  accuracy  scores. $1 
CFF 92.8 85.8 79.3  69.8 56.3 

Table  2:  Alphabet  recognition  accuracy  scores. 

S N R  1 5 dB I 10dB 1 15  dB I 20 dB I w dB 
CSS 1 19.2 1 37.3 I 59.6 I 73.8 I 93.8 _ _ _  ~. .~ 1 -  I 

CSF I 40.8 \ 61.6 1 75.5 1 84.4 1 94.1 
CFF I 58.7 1 72.4 I 81.5 1 88.5 1 94.2 

I1 I I I I I I1 

Table 3: 39-word  (Alphabet,  digits, and the three  command  words) 
recognition  accuracy  scores. 

Tables 1-3 show that  if  the proposed fixed point algo- 
rithm replaces the standard LP analysis in the recognition 
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system, then an improvement in recognition accuracy 
equivalent to an increase of about IO dB in input S N R  is 
achieved. If, however, the training is done using the standard 
LP analysis, and testing is done by  the  fixed point algorithm, 
then an equivalent improvement in input S M  of about 5 dB 
is achieved. The better results obtained in the first case are 
due to the similar distortion the fixed point algorithm intro- 
duces in creating the templates and the test patterns, which 
makes recognition easier. 
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