
Signal Restoration by Spectral Mapping 

Biing-Hwang Juang and L. R. Rabiner 
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974 

Abstract 
Traditional approaches to the problem of  noise  suppression  or signal 
restoration have been almost entirely based  upon the methodology and 
theory of signal estimation. In this paper, we treat signal restoration 
as a problem in signal detection. Instead of estimating the 
characteristics of the signal and/or the noise,  we establish a 
correspondence between the clean and the noisy signal through spectral 
mapping. In  the procedure, we collect separate samples of both the 
clean signal and the noise.  When the noise  is additive, the (simulated) 
noisy signal is obtained by adding the noise to the clean signal. The 
sequence of short time spectra of the clean signal and that of the noisy 
signal form a one-to-one  correspondence. The noisy spectral sequence 
is then used as a detection reference, to which the short time spectrum 
of an unknown  noisy  observation  is compared, resulting in a detected 
Occurrence of a particular group of spectra in the noisy  sequence. 
Through the (inverse)  mapping, the clean spectra that correspond to 
the detected noisy spectra are selected and processed to produce the 
restored spectrum. 

One important notion  of the approach is that it is  not limited to  the 
usual least squares or minimum mean square framework. Our 
preliminary results show that when the mapping (detection) is  based 
upon the likelihood ratio distortion measure, an SNR improvement  of 
approximately 10 dB is obtainable for a 14 dB SNR noisy signal. 
Under the  same condition, an improvement of approximately 8.5 dB 
can be obtained using a truncated cepstral distance measure. 

1.0 Introduction 

Consider a signal y that is a result of contamination of a clean signal, 
x ,  by a noise signal, n. For generality, y can be written as 

y -fG, n) (1) 

where f (. 1 represents the contamination/distortion function that mixes 
the clean signal and the noise into the noisy signal y .  If the 
contamination is additive, as  it usually is, then, 

y - x  + n .  (2) 

The general problem of interest is to restore x based  upon the 
observation of y so that  the original signal x is more faithfully 
represented. Traditional approaches to this problem  have primarily 
been  based  upon the theory of estimation, as discussed  in i l l ,  for the 
case of  noise contaminated speech  signals. 

Our  attempt here, in dealing with the problem of separating x and n 
given y ,  has a more  explicit  focus:  we try to reduce the effect of n 
when x ,  the original speech signal, is  modelled as a realization of an 
autoregressive source. In particular, if  u,/A,(z)  is the optimal p-th 
order all-pole model of, the clean.  speech signal x .  then a processed 
model estimate of y ,  Y(z) - ;/A b), will  give,  on the average, an 
improved similarity to the original model ux/Ax(z) in terms of a 
predefined distortion measure d: i.e. 

d(u,/A,b),  Y(z)) > d(ux/Ax(z),  ;/Ab)) , (3) 

where the overbar denotes an average and Y(z) is  some (spectral) 
estimate of the noisy signal y. The problem, formulated in a different 
manner (not in t e r m  of explicit minimization of distortion measures), 
was  discussed in [21  using maximum a posteriori (MAP) estimators. 
f i r  approach reported here uses (3) as the objective and takes a 
signal detection viewpoint in dealing with the problem. Our motivation 
for the distortion formulation, and thus  the proposed  methodology  is to 
allow the use of sophisticated distortion measures that  are believed to 
be more appropriate for  speech signals than  the usual Euclidean type, 
but are difficult to mathematically analyze for estimation purposes. 

2.0 White Noise  and Its Effects ~n Model Estimates 

While there have been  proposed quite a few distortion measures for 
speech signals, we focus  on the likelihood ratio distortion measure and 
a truncated LPC cepstral distance [31 in this paper. The likelihood 
ratio distortion measure assumes that both of the all-pole spectra under 
comparison  have unity gain, and is  defined as 

where A b )  - 1 + Q~z-‘ +. . . + aPz” and A’(z) - 1 + a;z-’ + 
. . . -t a; 2-p. 
The truncated cepstral distance we use  is  expressed as 

where (ci)  and [ci) are the cepstra corresponding to the all-pole models 
1/A(z) and l/A‘(z), respectively, and can be calculated from the 
following recursion: 

-ici - iai - x (i - k)ci-kak for i > 0. (6) 
i-1 

k-1 

The length of the truncated cepstrum is denoted by LC in ( 5 ) .  

In the following, let X, N and Y be the short-time spectral 
representations of x ,  n and y ,  respectively. The relationship among x ,  
n and y satisfies (2). Since our focus  is  on the all-pole  models of the 
signal, X, N and Y are also used as  the optimal p th  order all-pole 
spectra of x, n and y ,  respectively,  without ambiguity. Therefore, the 
likelihood ratio distortion and the truncated cepstral distance between 
the clean and the noisy signals can be denoted by dLR(X, Y) and 
d, (X, Y). Furthermore, if X, N and Y consist of sequences of spectral 
representations [Xr}:-,, {N,)f-l,  and { Y , ) k l  respectively, we define the 
average distortion/distance between any two spectral sequences by 
averaging  the distortion/distance between  corresponding spectral 
vectors in the sequences; for example, 

dm(X,  Y) - - d u ( x , ,  Yr) . 1 L  

= I-1 
(7) 

Let us also assume that  the noise  is  white, Gaussian. The effects  of 
such a noise  upon the short-time signal model estimate are difficult to 
analyze even though they are “independent” signals. Here, we  show 
the effects  of  noise  upon the model estimates directly in terms of the 
aforementioned distortion measures. Figure la and l b  are plots of the 
distortion results dm&, Y) and dc(X, Y), with p - 10 and LC - 12, 
as a function of the global signal-to-noise ratio (SNR). The noise  is a 
constant power (variance) source and the SNR is  defined  by 

SNR - 10 l~glo(E,/E,) (8) 

where E, and E, are  the energy of the entire signal sequence and the 
entire noise sequence respectively. These figures are obtained by 
averaging the results from 6 independent sequences of speech signals of 
bandwidth 4 kHz. As can be seen  from the figures,  when the SNR 
drops below 15 dB, the average distortion increases rapidly until 
around SNR - -15 dB.  Beyond -15 dB SNR, the noise  becomes 
dominant in the spectral representations (Le., overtakes the formant 
structure in x )  and the average distortion values saturate. This 30 dB 
range is consistent with the observation that  the average spectrum of a 
voiced  speech signal displays a -6 dB/octave trend (- 12 dB/octave 
due to  the glottal coupling and +6 dB/octave due  to  the lip 
radiation) [41, resulting in approximately a spectral dynamic range of 



30  dB up to  4 kHz. These figures  serve as references to which results 
of signal  restoration  algorithms  can be  compared and  calibrated. 

Fig. la) Likelihood Ratio  distortion  and lb) 12-term  truncated 
cepstral  distance between the clean signal  and  the noisy signal as a 
function of the  global signal-to-noise ratio. 

3.0 Spectral Mapping 

The  spectral mapping approach we propose here  tries  to  capitalize 
upon a known (a priori)  correspondence  between a set of clean spectra 
{Xi}f-, and  a  set of  noisy spectra {Y,]f-l. The correspondence is 
established by adding  the noise  signal  to the clean  signal  according to 
(2) to  form the noisy signal  and  then  calculating  the  spectral  sets Wi] 
and {Y,} ,  respectively. The most straightforward notion of spectral 
mapping is depicted  in  Fig. 2, where the clean  signal space is  denoted 
by d a n d  the noisy signal  space by @ The  restoration process,  for 
each  input noisy spectrum Y, involves  finding the  nearest neighbor Yi 
to Y in g a n d  mapping  back to  the clean spectrum X, in x since Y ,  
is known to be a noisy  version of X,. Since  the noise  signal  varies, this 
direct correspondence  between  noisy  and  clean spectra is only  one  of 
an infinite  set of possibilities, and  thus lacks the desired  robustness. 

A 

1 .  I 

Fig. 2 Illustration of the  spectral mapping  scheme. 

The above  mapping can be easily  extended  to the following  scheme for 
increased  effectiveness. We assume that  the d space consists of a 
finite  number of signal subsources,  each  denoted by Z,, 
j - 1, 2, .  . . , N .  We may  use the generalized  Lloyd algorithm I51 to 
obtain all Z,'s from the clean (training)  set (X&. Associated  with 
each Z, is a region Sf, 

Sf - ( x l d a ,  Z,) < d a ,  2,) for all i] . (9) 

Let I, be the index set, I, - {i I xf E Sf}. Since x m a p s  to q there 
exists a region SJ in @ such  that SJ - (Y lX  E Sf) and obviously 
Y,  E SJ, for i E I,. We now define a modified distortion  measure in 
@ from a noisy spectrum Y to  a noisy  region SJ as  depicted  in  Fig. 3, 

(10) 

where I 1  . I 1  denotes  the  cardinality.  The  nearest neighbor of an  input Y 
is the region SJ that satisfies 

d' (Y, SJ) < d ' W ,  ST) for all i . (1 1) 

When (11)  is true, we say Z, is the  restoration  spectrum of the 1- 
nearest-neighbor choice. 

Conversely, we define the region U ( Y )  C 9 to be  the  set 
{Y'I Y' E @, d(Y, Y') Q d,}. Represented in terms of the given 
noisy set {Y,}f-,, U(Y) 3 {Y,ld(Y, Y , )  Q d,] Us(Y). Note  that 

Fig. 3  Illustration of the  spectral  mapping scheme  with a modified 
distortion/distance measure. 

U(Y) - %if d, - m for  any Y. The notion of Us (Y) is of practical 
importance in the  current  approach which  relies  upon the given 
training  set for the  representation of the  entire space. The distortion 
threshold, d,, allows adjustment of the  subspace in % within which 
other processing can be  performed. When dl is finite, the modified 
distortion of (10) can be further revised to reflect the  subspace 
processing;  in particular, we define 

where I; - { i l X ,  E Sf and Y,  E u" (Y)]. If I; - {empty 
set} , d"(Y ,  SJ; v*(Y)) t? m. By ordering  the modified distortion 
d", one can  then  retrieve  the  appropriate  clean  subsource 
representations Z, for restoration.  Similar to  (111, for example, we 
may  choose Z, when d"(Y,  SJ; Us (Y)) < d"(Y ,  ST; Us (Y)) for all 
i as  the 1-nearest-neighbor  choice.  Alternatively, we  may  define 

I " (Y ;  d,") = bId"(Y, SJ; u"(Y)) Q dy"l (13) 

and  obtain  the  restoration vector by 

2 ( Y )  - 1 
,I 

2 Zf . (14) 
lU"(U; dl )I1 tw,(Y;.+f'')  

3.1  Practical  Implementation 

The system we implemented  is  based  upon the modified distortion 
measure of (12). The  distortion threshold d,,  in the definition of 

can be a fixed value  or a  fluctuating number. In  the  latter 
case, d, can be  chosen so that Ilu"(Y)Ii is a  constant Nb. In  our 
preliminary experiments, the difference  in the  spectral  distortion which 
resulted from the  restoration process  using either  a fixed threshold or a 
constant llUs(Y)II was  not apparent.  We  therefore chose to use the 
case with constant IlUs(Y)II. Furthermore, we use (13) and (14) to 
obtain  the  restored  spectrum.  Similar to the  situation in  defining 
Us(Y),  we chose to use fluctuating d", in (13) such that 
llI"(Y, d",Il - No where No is a  constant for ease in  implementation. 
We varied N, and Nb in our experiments to  study  their effects, the 
results of which are reported  in Section Z. 
The  distortion  measures used, as mentioned  above, are  the likelihood 
ratio  distortion  and  the  truncated  cepstral  distance.  When  the 
likelihood ratio  measure is used, the averaging procedure  in (14)  is 
performed on the residual-normalized autocorrelation vectors. When 
the  cepstral  measure is  used, the averaging is on the  cepstral vectors 
directly.  This is clear  from  a  distortion-minimization p i n t  of view. 

4.0 Experimeotal Results 

4.1  Database 

The speesh material we collected  for the  training sequence  was 
recorded from 20 speakers,  15 male  and 5 female, each  speaking 5 
sentences, resulting in a  total of 100  different  sentences with an 
accumulated  duration of about 6 minutes. The  test  material,  similarly, 
consisted of 6 sentences  spoken by two  speakers, who were  not used to 
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provide the training sequence. These sentences were extemporary and 
conversational; in addition, each sentence had different content. The 
reason for choosing a database of such generality was that our study 
tried to concentrate on the feasibility of the new approach under the 
worst speaking conditions. 

All the speech material were analyzed using a 10th order LPC 
autocorrelation method. The analysis window  was  20  msec  long and 
the  frame  rate was 80 per  second  6.e.  12.5  msec shift). As a result, 
the total numbers of vectors  used as  the training sequence and the 
testing sequence, respectively,  were  27310 and 1562. We did not try 
to process or reduce the training database for higher efficiency. 

The noise data were generated using a standard pseudorandom number 
generator with Gaussian distribution. The noise  used in simulating the 
noisy signals was different for all the sentences so as to maximize the 
true statistical noise perturbation upon the signal. The noise 
contamination in our simulation is  of a global type in that the noise 
power  is kept constant. This, of course, does not  allow evaluation of 
the approach under a constant signal-to-noise ratio condition. The 
global SNR therefore represents an average over all the sentences. In 
our current study, the global SNR was approximately 14 dB overall. 

4.2 The Likelihood Ratio Measure 

After the establishment of the clean and noisy  sequences, and the 
correspondence between the two, the next step in the approach is to 
generate N representative vectors {Z,]&1, each being associated with a 
region Sf, in x We used the generahzed Lloyd  method for this step. 
In our experiment, we tested two  values of N ,  namely N - 256 and 
N - 64. These two  conditions  will be referred to as 8-bit VQ and 6- 
bit VQ. As stated in Section 3.1, IlV(Y)II was  kept constant in the 
experiment. However, we tested different I I V  (Y)ll values in 
combination with the 6-bit and 8-bit VQ cases to study its effect. 

Figure 4 shows the average likelihood ratio distortion between the 
original clean spectra and the restored spectra as a function of the 
number of nearest neighbors for averaging, expressed in logarithmic 
units. The untreated noisy spectral sequence, which has - 14 dB 
SNR, results in an average likelihood ratio distortion of  6.8 as shown 
by the dashed line in Fig. 4. The six  curves are designated by the six 
parenthesized pairs respectively. The first number in each pair is 
IIV (Y)ll, the noisy  locality number, and the second designates 6 or  8- 
bit VQ codebook. The order of these pairs in the figure is according to 
the resultant distortion of each case at N, - 1 (or logZN, - 0). 
Several observations can be made from the results of  Fig.  4. First, the 
treatedhestored all-pole spectral sequences produce much  lower 
distortions than  the noisy, untreated all-pole sequence. Second, the 
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Fig. 4 Average likelihood ratio distortion and 5 )  average variance 
of the distortion of the restored sequences as a function of N,, for 
several sets of system parameters. 

distortion decreases almost monotonically  with increases in  N,; 
however, the reduction in distortion is  insignificant  when Nu increases 
past 8 or  12. Third, better results are consistently obtained with 
smaller IlV(Y)ll; at N, - 1 and 2, the distortion results are ordered 
exactly according to the I I V  (Y)H number - larger I I V  (YIII produces 
higher distortion - for each VQ case. This result confirms and 
validates the original motivation of the approach in that the spectral 
perturbation due  to noise can be somehow traced (via the known 
mapping) and processed  simply by the nearest neighbor  principle. 
When Nu is  more than 4, cases with large Ilu*(Y)II continue to 
improve  while cases with small l lV(Y)II start showing plateauing in 
performance. Finally, with the same noisy  locality number IlV(Y)II, 
8-bit VQ produced  lower distortion than 6-bit VQ. 

The above  best result, when plotted against Fig. l a  of the untreated 
noisy  sequence,  shows an effective  improvement of 10 dB  SNR. 

Another important performance indicator is the average variance of 
the resultant distortion, which is piotted in Fig. 5. Higher distortion 
variance means more uneven distortion, a situation generally 
undesirable in most speech processing techniques. The distortion 
variances produced by the treated spectral sequences are significantly 
lower than the variance of the untreated case (236.76). This reduction 
in average variance alone is  as,  or  even  more, important than the 
reduction in the average distortion. The relationship among the 
distortion variance, the noisy  locality  number IIV(Y)II and the 
averaging number  N,,  however,  is  not as clear as  that for the average 
distortion as shown in Fig. 4. 

4.3 Truncated Cepstral Distortion Measure 

We repeated the above experiment using a 12-term truncated cepstral 
distance for noisy spectral mapping. This 12-term truncated cepstral 
distance does  not include the zeroth cepstral coefficient  which 
corresponds to the logarithm of the gain term of the all-pole spectrum. 
The average cepstral distance is  plotted  in  Fig.  6, again as a function 
of  logZN,, for various I I V  (Y)II and VQ combinations. The general 
observations are quite similar to those already given for the likelihood 
ratio distortion case. Note  that the cepstral distance is a Euclidean 
distance and thus symmetric. This has one advantage in that  the 
measure and the mapping direction can be arbitrary. Nevertheless, the 
measure is not consistent with the all-pole model measure; that is, 
being  close in the truncated cepstral distance sense  need  not mean 
close in the LPC model spectrum sense. This accounts for the increase 
in the average truncated cepstral distance for the case of (64, 6) at 
N, - 1. The point to note here, however, is that  the nearest neighbor 
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Fig. 6 Average rruncated (12-term excluding cd, cepstral distance 
and 7) average variance of the distance of the restored sequences 
as a function of N,, for several sets of  system parameters. 
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mapping  is still valid for a Euclidean  distance even though the  measure 
may  not be consistent with  the LPC model  analysis criterion.  Indeed, 
Fig. 6 shows that  a significant reduction in the  average  truncated 
cepstral  distance is obtainable with the  current  restoration  procedure 
based  upon spectral mapping. 

While  the overall results of Fig. 6 resemble  those of the likelihood ratio 
measure case (Fig. 41,  we observe  one extra phenomenon  in the 
truncated  cepstral  distance case.  For the case of  (32, 6)  and (16, 81, 
Le. cases  with coarse VQ or  tight noisy  locality, the  average  cepstral 
distance  increases when N ,  increases above 4. This is caused by 
excessive averaging within the  available noisy  locality. This  increase in 
average  distance, however,  is small compared to  the reduction obtained 
from the  average  distance of the  untreated sequence.  In fact,  the 
above  best result, when plotted against Fig. l b  of the  untreated noisy 
sequence,  shows an effective  improvement of - 8.5  dB SNR. 

The resultant  variances of the  truncated  cepstral  distance  are plotted 
in  Fig. 7  for various  cases. The minimum average  variance  obtained 
was about 0.24,  which is significantly smaller  than  the  average 
variance of the  untreated sequence  (0.97). 

4.4 Truncated Cepstral Measure with Gain Term 

Although our main interest was the  restoration of the all-pole spectral 
shape, we also  investigated the recovery  of the signal level  in terms of 
the  LPC model  gain  using the  truncated  cepstral  distance.  We used a 
13-term  cepstral  distance,  adding  the  squared difference of the 
logarithm of the  gain  term  to  the  12  term  truncated  cepstral  distance 
described  above. The reason  for  using this  truncated  cepstral  measure 
for the  spectral level  recovery study is  simply  because of the Euclidean 
properties of the  distance  measure. 

The  same  experiment  reported above  was  repeated  using the  13-term 
truncated  cepstral measure. The  resultant  average  cepstral  distance is 
plotted  in  Fig.  8. Compared to the  untreated noisy sequence  which 
produced an  average  distance of  11.76, the  results of various parameter 
combinations show remarkable improvements. We also  observe 
significant reduction in the  average  cepstral  distance  variance  as shown 
in  Fig.  9. The  untreated noisy sequence  produced an  average  distance 
variance of  186.5, about 15-20 times that of the restored  results  with 
the best parameter  settings. 

distortion  sequence  obtained by comparing  the clean spectral sequence 
and  the  untreated noisy spectral sequence. As can be seen, there is a 
strong inverse correlation between the energy and  the  untreated 
distortion sequence: signal sections  with  higher  energy,  in general, are 
less  affected by the noise and  thus have  lower distortion  than lower 
energy  sections.  However,  depending  on the  signal  characteristics, 
some  sections  with  sufficiently  high  energy  may still be seriously 
distorted by the noise contamination.  This is  especially  evident at 
phonological transitions of the signal. The  3rd,  4th  and  5th rows are 
the  distortion sequences  for N ,  - 4, 8  and  16 respectively. The 
reduction  in  the  average  spectral  distortion is obvious in these plots. 
Furthermore, it can be seen that  the mappindaveraging  procedure 
eliminated  all of the extremely  high distortion regions of the  untreated 
sequence. Many of these  regions  correspond  to the  transitional  or low 
energy  sections of the signal. The effects of averaging are also 
demonstrated  in  these figures. 

, 3.9€+08 
0 

Y z 
I.OE+04 A r \ h  

1.0 161.0 

j!& A\ - 
NOISY SEQUENCE 161’o 

Fig. 10 Distortion  sequence of the noisy and  the  restored  spectra 
when using a likelihood ratio  distortion  measure. 
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Fig. 8 Average truncated (13-term including cd cepstral  distance 
and  9)  average  variance of the  distance of the restored  sequences 
as  a  function of N,, for  several sets of system parameters. 

4.5 Other Results 
The above results  are based  upon the comparison of the  average 
spectral  distortion.  The effectiveness of the proposed approach  can be 
further  illustrated by comparing the  resultant  distortion sequences 
which  not  only  show the  average  distortion improvement but also show 
the fine sequential  details of the  distortion for each  frame of the  signal. 
The  distortion sequences are plotted in Fig. 10 for the likelihood ratio 
measure case. The first row  of each figure is the energy Contour  of the 
test signal. The sequence has 161 frames.  The second row is the 
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