
s 10.1 A SETW'ORK-BASED  FRAJIE-SYSCHROSOL'S  LEVEL  BUILDISG  ALCORITHJI 
FOR COSSECTED  N'ORD  RECOGSITIOS 

Chln-Hut Lee and Lawrence R .  Rabiner 

Speech  Research Department 
AT&T Bell  Laboratories 
Murray Hill, NJ 07974 

ABSTRACT 

In ths  paper,  a network-base4 he-synchronous ,  level budding 
(FSLB) algorithm is  described for Itcogrumg continuous  speech as a 
connected  sequence of words. Previous frame synchrooous approaches to 
recoption have included the  one-pass approach, the one-stage  approach, 
and an unpublished  multi-level approach. The proposed  algorithm, which 
has all the  features of these earlier  methods, as well as several new 
features, and which is implemented in a  network-based  approach,  is  a 
numerically  exact, frame synchronous,  implementation of the conventional 
level budding (LB) algorithm. As with some of the earlier  methods, the 
proposed  algorithm is highly regular and modularized  for distributed 
computation  among  several special purpose processors.  New features of 
the algorithm  include the capability of detennining  the best  alternative 
recoption strings (e.g. second and third best strings), at  every level, even 
for very complicated grammar networks, and the capability  of  efficiently 
incorporating  several word and state  duration sconng techniques directly 
in the forward  search.  thereby  elirmnating the need for a  postprocessor as 
required  in the direct LB implementation. Word  transition  rules (e.g.  a 
language  model) can also be easlly  incorporated into the  proposed 
algorithm. 

1. INlRODUCTION 

The problem of recognizing a fluently spoken Sentence (or string 
of words or subword wts) based on concatenating  individual word 
models is extxtmely important for automatic  speech recognition t a b .  A 
a ide  variety of approaches this problem, all based on the t e c h q u e  of 
dynamic  programming (DP) [l], have been proposed and evaluated [2-81. 
The earliest  algorithm  for  connected  word  recognition  was  proposed  by 
Vintsyuk [2]  who  showed how DP techniques  could !x used  to get the 
optimal  sequence of words which match  a  spoken input. Vintsyuk's 
procedure processed the speech  signal  in  a he-synchronous  manoer, 
and therefore his pioaeenng work formed the basis for several DP-based 
solutions to the speech recognition problems. VinlsyuL also proposed a 
rudimentary scheme for incorporating syntactic  constraints  among  words 
m the search (i.e. a  grammar). 

Since  Vintsyuk's  work  was  largely unkwan in the US and 
Japan,  two m e r e n t  DP-based  search s~uctures  were proposed for solvmg 
the coanected word recoption problem, namely  the  two-level DP match 
approach of Sakw [3], and the level  building approach of Myers and 
Rabiner  [4]. These approaches M e r  from Vmtsyuk's method  in thelr 
flexibility and in  the computation and storage requirements, but 
fundarnentally  they  both  were capable of finding  the optimal  match to a 
spkoen word  string. A rediscovery of Vintsyuk's method was made by 
Bridle et al [ 5 ] .  who propsed a variation on the frame-synchronous 
method  which was  subsequently called the one-pass DP approach, and by 
Ney [6] who proposed the one-stage DP approach. The major  innovation 
m these approaches wyas the way in which a grammar was mtegrated into 
the search procedure. Another innovation  was the incorporation of 
multiple  levels  mto  the search so that a given  input  utterance could be 
decoded into "opumal" strings of different length (i.e. number of words in 

the string).  Incorporation of a grammar into the level building algorithm 
was also demonstrated by  Myers and L e m o n  [7]. Most recently, 
G U  [8] proposed  a Erame-synchronous algorithm which  could be used 
with either templates or hidden  Markov models (HhlM) [9], and which 
had all the features of the Bridle er a1 and Ney approaches, and it also 
had  the  capabdity  of handling  mutiple  levels in an appropnate manner. A 
special purpose chip,  called tbe Graph Search Machine (GSW [81 was 
designed and shown capable of performing the search  operations required 
in the  DP solution. 

In this paper we propose  a  frame-synchronous level buildmg 
(FSLB) algorithm  that preserves all the properties of the original  level 
building  approach, and that is applicable to  solutions based on using 
either H M " s  or templates.  At  issue  here is proper  incorpomtion of word 
and state duration constraints, as well as proper exhaction of multiple 
candidate strings. None of the earlier DP-based search algorithms 
handled these problems  in an appropriate manner. The proposed FSLB 
algorithm is also capable of handling word (or subword)  transition  rules, 
e.g.  a  language  model,  directly  in the forward search part of the 
procedure.  There are several  ways m which state dn t iona l  constraints 
have been  incorporated into the HMM scoring, namely Levinson's 
continuously  variable  duration HMM [IO], and hidden  semi-Markov 
models and expanded  state H M " s  [I l l .  Since these explicit duracion 
models sigru!imtly inmase tbe computation and storage associated with 
HMM scoring,  a  simple alternative is  to account for state  duration  in  a 
post-processor  after th level  building Search is completed [12]. The level 
budding algorithm in  [12] n o t  only  deals with  word and state duration 
scoring smtegies but also  handles multiple cac&date strings  effectively. 
The technique is not guaranteed to generate the best Q candidate  strings; 
however, it does give  a  reasonable  list of c d d a t e s ,  including the  best 
candidate  for every possible stnng  length 'Ihe FSLB algorithm proposed 
here handles both  word and  state  duration  constraints  properly (in the 
forward search) and generates the best Q candidate strings al all levels 
with  essentially  minimal  computation  cost. 

As part of the development of the RLB algorithm,  we review 
the similarity between the convenaonal level  building algorithm and the 
frame-synchronous  DP  approaches [2, 5 ,  6 ,  81 by recasting the speech 
r e c o p h o n  task as a network search problem. We then present a unified 
approach to solving  speech recoption by  using optimal  6nite-state 
rietwOrk (FSN) decodmg, and show that the word and state duratlon 
SCOmg schemes m the level building algorithm can be implemented 
e x a d y  by a s s l p n g  the appropriate  cost to arcs and nodes in the netwok 
search 

2. SPEECH  RECOGNITION VIA FSN DECODING 

As pointed out  in [13], most  speech  recognition tasks  can be 
organized mto a hierarchy  of networks with a hrute number of nodes and 
arcs comspondmg to acoustic,  phonetic and syntactic knowledge  sources 
and their interactions.  Recognition of a spoken utterance correspocds to 
finding an optimal path through the fmite  state ne twok The Idea is 
applicable for  both isolated word recogmion and continuous speech 
recognition j14-151. The optimal network  search  can be accomplished by 
sequential  decoding using Dynamic  Programming (DP) based on a  simple 
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concept.  The  concept  was  stated by Bellman [ I ]  as the principle of 
optimality in the following  terms: "An optimal  set of decisions has the 
property  that  whatever the Erst  decision is, the remaining  decisions  must 
be optimal  with  respect to the outcome of the Erst  decision." In terms of 
decoding  optimal  paths in a finite state  network, the principle of 
optimality  enables the decoding to be performed on a h e - b y - f r a m e  
basis, as long as all the information  required for the local  opumal  paths 
are kept so that the global  optimal  paths  can be found  based on the local 
ones. 

For  a  connected  word  recognition  task. it is instructive to 
decompose the network  into two levels,  namely  a  phrase (gmmmar) level 
and an intra-word  level.  The  intra-word  level is usually  a  word  model, 
which  could be a  whole  word  template or a  hidden  Markov  model  for  a 
word. In this paper, we will focus our attention on the latter.  The intra- 
word nodes are essentially the HMM states, while the intra-word arcs 
represent  state  transitions.  For  a  left-to-right H M M ,  the intra-word node 
can be reached  from  only  a  small  number of predecessor  intra-word 
states. In general, the intra-word  level  uses  a  sparse  oetwork 
representation  for  most  recognition  tasks. As for the inter-word  level, it 
is  simply  represented by a grammar network, in which the nodes represent 
level  boundaries, as in the conventional LB algorithm, and the arcs 
represent word models  and  word  transitions. This grammar  level  network 
representations  range  from  simple rrerworks with few syntactic  constraints 
to highly coaspained,  complicated  grammar  networks. 

We will now describe how to  associate  a  stochastic  cost (penalty) 
to  different  parts of an FSN so that  optimal FSN decoding  can be 
performed  based on those  stochastic  penalties. In a  speech  recognition 
task, in which the word  models are characterized by an HMM, the 
accumulated  cost of a  path  to any node in the FSN  at  time r can be 
d e k d  as the negative of the accumulated  likelihood of the path at time 
I, where likebood is defined the logarithm of the probability of that path. 
The  cost of staymg  in an mternal  state at time r is related to the 
probabdity of observing the feature  vector in that  state at time r ,  and can 
be d e f k d  as rhe negative of the logarithm of the state  observation 
probabilty. The cost of making  an  internal  transition  includes the 
negahve of the logarithm of the transltion probability,  plus  some  possible 
state  duration  penalty. The cost of entering the right  grammar node of a 
grammar  arc  includes  a  posslble  state and word duration penalty.  Fmally, 
the cost of leaving the left  grammar  node of a  grammar arc includes  a 
possible  word m i t i o n  penalty. With all the costs  assigned  properly, 
the search  for the best path in an FSN is essenually the same as finding 
the minimum cost  path  through the network or equivalently performing 
the maximum  likelihood  network decodmg. 

3. LY FSLB ALGORITHM FOR  SPEECH  RECOGNITION 

We  have  &cussed  several  ways  to  map  a  speech  recogmuon 
ta sk  into  a  network  decoding  problem. The LB algonthm  [12] and the 
FSLB  algorithm  proposed  here are fundamentally  identical in that they are 
solving the same  network optimization problem, i.e. limlmg among all 
possible  segmentations of the input  utterance. the most  likely  state and 
suing sequence  that  satisfies  a  given  netwodr  syntactic  constraint.  The 
search  strategies are the same at the intra-word  level,  while the difference 
Lies m the grammar level  search.  The LB algorithm  searches for all 
possible optunal paths on a  level-by-level bass, that  is it finds, for all 
possible  ending  times, the optimal  path at one  level: It then uses the set of 
all  possible  level  ending  times  from the previous  level, as the set  of 
possible stamog times of the next  level, m order to b d d  optimal  paths 
for the higher levels at all  possible  ending  times.  Therefore the 
computation  wavehont p r o p s s e s  from  one  level  to the next. On the 
other  hand,  the  computation  wavefront for the FSLB algorithm  progresses 
on a Erame-by-frame basis, i.e. to search for o p a l  paths to all possible 
level bouodaries at each h e .  Since  both the LB and FSLB algorithms 
aaemp  to  solve the same oparmzation problem  efficiently, the amount of 
search  computation is similar; the key ddference Lies in the way the 
search  computation  wavefront  progresses. and therefore  the  storage 
requirements and the memory  management  strategies are vastly  different. 

TIE FSLB algorithm  proposed bere is  essentially  a  frame- 

synchronous  implementation of the LB  algorithm  described in  [12], and 
the optimal  search  is  accomplished by mcorporating all the state  and word 
duration  scoring  schemes on a h e - b y - h e  basis.  Since the optimal 
path  at  one  level is based on optimal  paths to the previous  levels, it 
suffices to solve the level building optimization  problem Erame- 
synchronously by searching for  optimal  paths  to all level  boundaries  at 
any  time r ,  which in turn can be solved by searching for all optimal  paths 
to all internal nodes between subsequent  level  boundaries at any  time r .  
Therefore, for each node in the FSN, at any time r ,  the FSLB  searches for 
the best path arriving at that node at that  time, and coostmcts the optimal 
path of duration r to that node from all the best  paths of duration (r-I). 
The  principle of optimality allows the best path  to any node j ,  at time r ,  
to be determined  from the best  paths to all nodes I, at time ( r - I ) ,  plus the 
best policies (wansitions h m  node i to node 1) at time 1. Parameters 
needed  for  computing the best  paths  include the accumulated  likelihood  to 
any node on the FSN, the path  information  such as source and destination 
grammar nodes for each grammar arc on the path, and word and state 
durations  required in order  to  compute  duration  probabdities.  Based on 
the above, we  now present  a  grammar-driven FSLB recognition  algorithm. 

A Synrar-Dlrecred FSLB Algorirhm 

Step 1. Perform initialization for all nodes and traceback  buffers 
Step 2. Perform optimal  path  budding  frame-by-frame 

For  every  input  speech  frame  (wtule not end of utterance) 
Perform  feature  extraction (FE) 
Compute  local  likelihoods (LL) for  states 
For every  grammar  node in the wtwork (level  loop) 

For every  predecessor  grammar node 
For  every arc between them (word moilel loop) 

Perform  local DP for  every  internal  node (DP1 j 
Update  path  likelihood a d  path  informauon 

Perform  path  merging  DP (Dm) 
Update  accumulated  path l i k e W  and path dormation 
Update  accumulated  traceback  buffers 

Step 3. Perform post-processing and backuachg  (PPBT)  
For every  terminal  node 

Perform  duration scoring post-processing 
Perform m e b a c k  to  idenhfy r ecopzed  string 

Step 4. Determine the recognized string 

The modules  of the FSLB  algorithm are arranged in the block diagram 
shown m Fig. 1. Modules E, LL,  PP and BT are essentially the same as 
those 10 the LB algorithm. Tbe "Update"  module uses the local 
likelihoods  computed in the LL module to update the accumulated 
likelihoods of the optimal  paths to all the mternd nodes.  We --dl now 
descnbe  modules  DPI and DP2 in more detail in the following sections. 

3.1 A Modified Intra-word Viterbi Decoding Algorithm 

Conventional  Viterbi d e c h g  algorithms for W g  the best 
decoded  sequence  for a  given  hidden  Markov  model are readily  avadable 
in the literature. 'Ihe duration  scoring  strategy IS often not mcorporated 
into the algorithm. We will now modify the Viterbi  decoding  algorithm 
to  include all possible  state and word duration  probabdities and word 
transihon  probabilities so that all the probabdities  can be incorporated in 
the forward  search  scheme  either  before or after  paths are merged at the 
nodes of the FSN.  Depending on the desired  duration sconng strategies, 
we can simply  associate proper cost to the arcs of the word-level I" 
network. The post-processing  duration  scoring  scheme in [121 can be 
accomplished in the FSLB by associating  a word durahon penalty for 
tramversing the arc  connecting the rightmost  node of the word  model and 
the right  grammar  node (RG) in the forward search  and by a s s i p g  a 
state  duration  penalty  to the s a m e  arc and incorporating the state d m o n  
penalty at the end of the utterance  for  post-processiag. We will discuss, 
in more detail,  various  ways of incorporating d m o a  information  into 
the FSLB  algorithm in Section 5 .  As for the word  transition  penalty, it 
can be based on some  simple  word transltion rules  or  a  complex  language 
model [15].  The  word transition penalty  can be easlly  incorporated by 
3ssoclating a  penalty  for aaosversing the arc connechng the left  grammar 
node (LG) and the lefrmost  internal  node of a word model. This cost 
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depends on the previously  decoded  words on the best  path entenng the 
left  grammar node. 

3.2 A Grammar Level Path Merging Algorithm 

Grammar  nodes  on  a network allow paths  reaching that node  to 
merge so that only a  limited  number of the paths  are  allowed  to grow to 
the next  level. They also  provide  branching  to the higher levels. If only 
the optimal  path is d e s a  at each  of the terminal  nodes of a grammar 
network, then path  merging at a  grammar  node elmunates all  non-optimal 
paths  reactung that node. The grammar level  path  merging algorithm 
proposed  here is similar to eq . ( l l )  in [I21 where an optimal path is 
selected at a  level  boundary. For a general p m a r  network, we n d  
only need  a  backpomter array  to  indicate  how long the best  path reaching 
node g has stayed in the best  arc,  we ad also need  a node backpointer 
m a y  to indicate  the left grammar node of the best 'a r e a c h g  that 
grammar  node. 

4. SEARCH FOR THE GLOBALLY  SECOND  BEST  PATHS 

By defiruuon, the  globally second best path  to any -erammar 
node, m a h t e  state network, is ddferent from the globally best path  to 
t h a t  node, in  the sense that  the decoded stnngs should be M e r e n t  
Smce the search IS only  focused on the g m a r  node level,  rather  than 
on the intern31  node  level. there is  very linle adbtional computation 
requmd. Simllar to the search  strategy  for the optimal  path, s e a r c h g  for 
the second best  path to any grammar node can be accomplished 
sequenhdly by computing  the  second best path to  that p m a r  node  at 
any tune t. The second best path  informahon required  is also sirmlar to 
what IS needed for the ophmal path. 

The  algonthm proposed here  to search  for  the globally second 
best  paths to  every grammar node  in the bate state  network  can  be 
formulated based on a  concept  extended from the principle of optunality. 
It states that the second  best  path  to any grammar node g. at  time I ,  is 
either  path P 12(g) or path P ?,(g) d e W  n follows. We de& l(g) and 
2(g) to be the globally best and second best paths  reaching grammar node 
g. and l'(g) and 2'(g) to be the locally  best and  second best subpaths 
(arcs) on the locally best and second best paths r e a c h g  grammar node g. 
From the principle of optimahty, the best path  is  composed of the locally 
best subpath I'(g)=a of duration b p ( u )  and the best path l(i) reaching  the 
left grammar  node  r=LG(a) of arc u at tune t ( r )= t - e lapse (o ) .  Whereas 
the candidate  path P ; 2 ( g )  is composed of the locally second best subpath 
!'(g)=b of duration e /upse (b )  and the  best path l(j) reaching the left 
grammar node j=LG(b) of arc b at  time ru)=r-elapse(b);  the candidate 
path P ? ; (g )  1s composed of the locally  best subpath l ' (g) and the second 
best path 2(i) reaching grammar node i at tune I ( I ) .  Nodes i and j can be 
the same, and word durations e iupse (u)  and e h p s e ( b )  can also be the 
same; however the arcs a and b should be ddferent to guarantee the 
complete  second  best string be M e r e n t  from the best string. 

In the FSLB algorithm proposed m Section 3, we only  allow the 
optimal patts at time ((-1) to be used  in constructing the ophmal paths at 
time t. If we also allow other caxhdate paths  to collsvucl  paths  in the 
next level, as was  performed in the I 5  algorithm to obtain muhple 
candidate strings. then the amount  of search wdl increase  proportional to 
the number of candidate  paths  retained. It turns out that P ,?(g) 1s the 
second  best  path among all other  paths if paths  can  only be consrmcted 
from the local best ones. Similarly, PZi(g) is the second best path d 
other Candidate paths are allowed to grow before  they are pruned when 
merging  at the grammar ncde L w a )  at  time r-e/upse(u).  The algorithm 
proposed  here  extends the property of the principle of optunality in that 
only  paths P ;?(g) and P ?,(g) are compared. As a  result, the algonthm 
requires no additional search computation, and only  some  additional 
bookkeepmg is required The traceback  information and duration 
probabilities  of the globally  second best paths are managed s l m i l a r  to that 
of the  globally best paths. 

5. INCORPORATION OF DLXATION PROBABILITIES 

"&en mua-word state  duration IS properly incorporate&  the 

HMM duntlon models  in [lo-111 seem to  improve  performance on some 
recognition  applications.  Since those explicit duration models 
sigmficantly increase the computation  and  storage assmated  with  scoring, 
a  simple  alternative is to account  for the state  duration in a  post-processor 
after the level  budding search is completed [12]. In the following, we 
focus our discussion on how to incorporate both the word and state 
duration  probabilities  into the HMM scoring and network  search. The 
reader  is referred to the modeling  approaches in [10-12]  to  learn how  to 
model the word  and state  durations and  how to assign weights when these 
duration  penalties  are  incorporated in the HMM scoring. 

We have shown in Section 2 how durahon penalties can be 
represented  in the nemork search by associauog proper  cost to arcs on a 
bate state network. In Section 3.1 we have also formulated  a  general 
strategy showmg how the duration penalties can be incorporated in the 
modified Viterbi  decoding  algorithm. The way durahon  penalties are 
m o r p r a t e d  depends on the HMM scoring saategy in the network  search. 
If  they are to be used  before the paths  merge at a ceriain node  in  the 
network, then  they should be added to the path Likelihoods  before the 
paths are compared and pruned. If the scoring scheme requires  the 
duration penalties to be included only  at the end of the utterance, then a 
separate  buffer is needed  to  save the additional  duration  information so 
that they  can be imposed by a  post-processor. 

The word duration probability is usually  included at the end of a 
word (shategy Wlj;  therefore  candidate paths wth unlikely  word 
d w o n s  are more hkely to get p r u d  even when the path  likelihoods 
u-e reasonable.  However, we can impose the word duration at che end of 
an unerance and use a  post-processor to handle the admtional information 
before the  best candidate  path is selected  (strategy  W2).  We can also  use 
normahzed word durations or normalized  accumulated word durations  in 
the scoring or not use any  word duration information at  all (strategy WO). 

The state duration  probablhty  can be included af the end of a 
state  (strategy SI), at the end of a  word  (Strategy S 2 ) ,  or at  the end of an 
utterance (Smtegy S3) by using a  post-processor.  We  also can use either 
normalized state durations within a word or normalized  accumulated  state 
durations within a word. We can also  avoid using  the state  duration 
information  (Strategy SO). 

In the following, we compare  performance  using  different 
combmatiom of the word and state  duration  scoring  strategies. The task 
~nvolved is speaker-independent  connected  digit  recognition. The 
database  used  in the evaluation  is the TI speaker-independent  connected 
d q g t  database. The featwe vector  used in the experiment is a 
combination of 12  weighted LPC cepshal coefficients [16], and I2 delta- 
cepsual coefficients [17]. The state  observation  densities are 
characterized by a  muluvariate  mixture  Gaussian density [IS]. The 
HMM W g  is descnbed in more  detail in [12], where a segmental k- 
means algontbm was used to eshmate the HMM parameters  via a k- 
means clustenng techruques. In this speafic  experiment, the test 
vocabulary  consisted of  11 words.  namely 10 digits plus the word "oh". 
To characterize each  word we use 3 models per word, 10 states per 
model,  and 9 mixtures per  state. 

Sm different  duration sconng  smteges were tested.  These 
mluded  the following: ( I )  WOeSO,  where  no dumaon  informauon .,vas 
used; (2) WI+SO,  where  state  duration was not  used n M e  word duration 
was scored at the end of each word: (3)  WO+S2,  where  word durauon 
was not used  but state  duration was used  at the end of each  word: (4) 
w1+S3, the current post-processmg  strategy in [9]; ( 5 )  WI+S?, where 
both  word  and  state durauons were lmposed at the end of each word; and 
( 6 )  Wl+SI, where the word durahon was incorporated at the end of each 
aord and  state  duration  was  incorporated at the end of each  state. The 
test results are listed in Table 1. where 8,578 variable length s m g s  were 
tested. The results  in the row labelled L'L shows the string error rates if 
the length of the tested suing length is unknown, and the  results in the 
row labelled KL gives the string error rate d we  know the length of the 
tested string. As shown in  Table I .  there is only a  slight staastical 
m e r e n c e  among all the duration sconng  shategies tested. 
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Table 1. String error  rates  for  various  duration  scoring  configurations 

6. CONCLUSION 

In this paper,  a he-synchronous level  building (FSLB) algorithm is 
proposed for recognizing connected  sequences of words. The algorithm is 
essentially  a he-synchronous implementation  of the conventional  level 
building  (LB)  algorithm and therefore the FSLB  algorithm  yields  exactly 
the same  numerical results as the LB algorithm.  However, in contrast  to 
the LB algorithm  which  decodes  optimal s h g s  at the end of an utterance 
on a  level-by-level  basis, the FSLB  algorithm  performs the maximum 
likelihood string decoding in a network on a f r a m e - b y - h e  basis so hat 
the optunally decoded p d a l  strings are immediately  available at any 
time. The FSLB  algorithm also offers  a n u m b e r  of advantages  over tbe 
LB algorithm,  namely: (1) The FSLB  algorithm is highly  regular,  which 
makes it easy to implement on general or special  purpose  hardware; ( 2 )  
the FSLB algorithm is highly  modularirzd so that the local l i l e W  
computation and the local  Viterbi decoding for  each  word model can be 
performed in parallel. which makes it atuaOive for  distributed 
computation among multiple  special-purpose  processors; (3) for  decodiag 
a  given 6mt.e state grammar wtwodr, at time r ,  the FSLB  algorithm  uses 
only the information about the optimal  paths  at  time (1-1) plus tbe 
observation  vector at time r to search for the optimal  paths and to update 
the accumulated  path  likelihood so that the memory  requirement is greatly 
reduced; ad (4) multiple c&te strings, e.g. the globally  second  best 
strings, can be obtaiwd easily even for  a  very  complicated giarnmar 
network. In a a t i o n  to the simplified search strategy, the FSLB 
algorithm also has the flexibility  that all the word and state  duration 
scoring techniques, e.g. the state  duration  postprocessing  model  used in 
the LB algorithm, can be  implemented simply, efficiently and directly UI 

the forward search. Word traosition d e s ,  such as a  language  model,  can 
also be easily  incorporated. 
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