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ABSTRACT

In this paper, a network-based, frame-synchronous, level building
(FSLB) algorithm is described for recognizing continuous speech as a
connected sequence of words. Previous frame synchronous approaches to
recogmtion have included the one-pass approach, the one-stage approach,
and an unpublished multi-level approach. The proposed algorithm, which
bas all the features of these earlier methods, as well as several pew
features, and which is implemented in a petwork-based approach, is a
numencally exact, frame synchronous, implementation of the conventional
level building (LB) algorithm. As with some of the earlier methods, the
proposed algorithm is highly regular and modularized for distributed
computation among several special purpose processors. New features of
the algorithm include the capability of determining the best alternative
recognition strings (e.g. second and third best strings), at every level, even
for very complicated grammar networks, and the capability of efficiently
incorporating several word and state duration scoring techniques directly
in the forward search, thereby eliminaring the need for a postprocessor as
required in the direct LB implementation. Word transition rules (e.g. a
language model) can also be easily incorporated into the proposed
algonithm.

1. INTRODUCTION

The problem of recognizing a fluently spoken sentence (or string
of words or subword units) based on concatenating individual word
models is extremely important for automatic speech recognition tasks. A
wide variety of approaches this problem, all based on the technique of
dynamic programming (DP) (1], have been proposed and evaluated [2-8].
The earliest algorithm for connected word recognition was proposed by
Vintsyuk [2] who showed how DP techniques could be used to get the
optimal sequence of words which match a spoken input. Vintsyuk's
procedure processed the speech signal in a frame-synchronous manner,
and therefore his pioneering work formed the basis for several DP-based
solutions to the speech recognition problems. Vintsyuk also proposed a
rudimentary scheme for incorporating syntactic constraints among words
in the search (i.e. a grammar).

Since Vintsyuk's work was largely unknown in the US and
Japan, two different DP-based search structures were proposed for solving
the connected word recognition problem, namely the two-level DP match
approach of Sakoe [3], and the level building approach of Myers and
Rabiner [4]. These approaches differ from Vintsyuk’s method in their
dexibility and in the computation and storage requirements, but
fundamentally they both were capable of finding the optimal match to a
spkoen word string. A rediscovery of Vintsyuk's method was made by
Bridle er a! (5], who proposed a variation on the frame-synchronous
method which was subsequently called the one-pass DP approach, and by
Ney [6] who proposed the one-stage DP approach. The major innovation
in these approaches was the way in which a grammar was integrated into
the search procedurc. Another innovation was the incorporation of
multiple levels into the search so that a given input utterance could be
decoded into "optimal” strings of different length (i.e. aumber of words in
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the string). Incorporation of a grammar into the level building algorithm
was also demonstrated by Myers and Levinson (7). Most recently,
Glinski (8] proposed a frame-synchronous algorithm which could be used
with either templates or hidden Markov models (HMM) (9], and which
bad all the features of the Bridle ef a/ and Ney approaches, and it also
had the capability of handling mutiple levels in an appropriate manner. A
special purpose chip, called the Graph Search Machine (GSM) (8] was
designed and shown capable of performing the search operations required
in the DP solution.

In this paper we propose a frame-synchronous level building
(FSLB) algorithm that preserves @!/ the properties of the original level
building approach, and that is applicable to solutions based on using
either HMM's or templates. At issue here is proper incorporation of word
and state duration constraints, as well as proper extraction of multiple
candidate strings, None of the earlier DP-based search algorithms
handled these problems in an appropriate manner. The proposed FSLB
algorithm is also capable of handling word (or subword) transition rules,
e.g. a language model, direcdy in the forward search part of the
procedure. There are several ways in which state durational constraints
have been incorporated into the HMM scoring, namely Levinson's
continuously variable duration HMM (10], and hidden semi-Markov
models and expanded state HMM's [11]. Since these explicit duration
models significandy increase the computation and storage associated with
HMM scoring, a simple alternative is to account for state duration in a
post-processor after the level building search is completed [12]. The level
building algorithm in {12] not only deals with word and state duration
scoring strategies but also handles multiple candidate strings effectively.
The technique is not guaranteed to generate the best Q candidate strings;
however, it does give a reasonable list of candidates, including the best
candidate for every possible string length. The FSLB algorithm proposed
bere handles both word and state duration constraints properly (in the
forward search) and generates the best Q candidate strings at all levels
with essentially minimal computation cost.

As part of the development of the FSLB algorithm, we review
the similarity between the conventional level building algorithm and the
frame-synchronous DP approaches (2, S, 6, 8] by recasting the speech
recognition task as a petwork search problem. We then present a unified
approach to solving speech recognition by using optimal finite-state
petwork (FSN) decoding, and show that the word and state duration
scoring schemes in the level building algorithm can be implemented
exactly by assigning the appropriate cost to arcs and nodes in the network
search.

2. SPEECH RECOGNITION VIA FSN DECODING

As pointed out in [13], most speech recognition tasks can be
organized into a hierarchy of networks with a finite number of nodes and
arcs corresponding to acoustic, phonetic and syntactic knowledge sources
and their interactions. Recognition of a spoken utterance corresponds to
finding an optimal path through the finite state network. The idea is
applicable for both isolated word recognition and continuous speech
recognition {14-15]. The optimal network search can be accomplished by
sequential decoding using Dynamic Programming (DP) based on a simple



concept. The concept was stated by Bellman (1] as the prnciple of
optimality in the following terms: "An optimal set of decisions has the
property that whatever the first decision is, the remaining decisions must
be optimal with respect to the outcome of the first decision.” In terms of
decoding optimal paths in a finite state network, the principle of
optimality enables the decoding to be performed on a frame-by-frame
basis, as long as all the information required for the local optimal paths
are kept so that the global optimal paths can be found based on the local
ones.

For a connected word recognition task, it is instructive to
decompose the network into two levels, namely a phrase (grammar) level
and an intra-word level. The intra-word level is usually a word model,
which could be a whole word template or a hidden Markov model for a
word. In this paper, we will focus our attention on the latter. The intra-
word nodes are essentially the HMM states, while the intra-word arcs
represent state transitions. For a left-to-right HMM, the intra-word node
can be reached from only a small number of predecessor intra-word
states. In general, the intra-word level uses a sparse network
representation for most recognition tasks. As for the inter-word level, it
is simply represented by a grammar network, in which the nodes represent
level boundaries, as in the conventional LB algorithm, and the arcs
represent word models and word transitions. This grammar level network
representations range from simple petworks with few Syntactic constraints
to highly constrained, complicated grammar networks.

We will now describe how to associate a stochastic cost (penalty)
to different parts of an FSN so that optimal FSN decoding can be
performed based on those stochastic pepaltes. In a speech recognition
task, in which the word models are characterized by an HMM, the
accumulated cost of a path to any node in the FSN at time ¢ can be
defined as the pegative of the accumulated likelihood of the path at time
t, where likelihood is defined the logarithm of the probability of that path.
The cost of staying in an intemal state at time ¢ is related to the
probability of observing the feature vector in that state at time ¢, and can
be defined as the negative of the logarithm of the state observation
probability. The cost of making an internal transition includes the
negative of the logarithm of the transition probability, plus some possible
state duration penalty. The cost of entering the right grammar node of a
grammar arc includes a possible state and word duration penalty. Finally,
the cost of leaving the left grammar node of a grammar arc includes a
possible word transition penalty. With all the costs assigned properly,
the search for the best path in an FSN is essentially the same as finding
the minimum cost path through the petwork or equivalenty performing
the maximum likelihood network decoding.

3. AN FSLB ALGORITHM FOR SPEECH RECOGNITION

We have discussed several ways to map a speech recognition
task into a network decoding problem. The LB algorithm [12] and the
FSLB algorithm proposed here are fundamentally identical in that they are
solving the same network optimization problem, i.e. finding among all
possible segmentations of the input umerance, the most likely state and
string sequence that satisfies a given network syntactic constraint. The
search strategies are the same at the intra-word level, while the difference
lies in the grammar level search. The LB algorithm searches for all
possible optimal paths on a level-by-level basis, that is it finds, for all
possible ending times, the optimal path at one level: it then uses the set of
all possible level ending times from the previous level, as the set of
possible starting times of the next level, in order to build optimal paths
for the higher levels at all possible ending times. Therefore the
computation wavefront progresses from one level to the next. On the
other hand, the computation wavefront for the FSLB algorithm progresses
on a frame-by-frame basis, i.e. to search for optimal paths to all possible
level boundaries at each frame. Since both the LB and FSLB algorithms
attempt to solve the same optimization problem efficiently, the amount of
search computation is similar; the key difference lies in the way the
search computation wavefront progresses, and therefore the storage
requirements and the memory management strategies are vastly different.

The FSLB algorithm proposed here is essentially a frame-
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synchronous implementation of the LB algorithm described in [12], and
the optimal search is accomplished by incorporating all the state and word
duration scoring schemes on a frame-by-frame basis. Since the optimal
path at one level is based on optimal paths to the previous levels, it
suffices to solve the level building optimization problem frame-
synchronously by searching for optimal paths to all level boundaries at
any time ¢, which in turn can be solved by searching for all optimal paths
to all intemnal nodes between subsequent level boundaries at any time .
Therefore, for each node in the FSN, at any time ¢, the FSLB searches for
the best path arriving at that node at that time, and constructs the optimal
path of duration ¢ to that node from all the best paths of duraton (r-1).
The principle of optimality allows the best path to any node j, at time r,
to be determined from the best paths to all nodes i, at time (r-1), plus the
best policies (transitions from node i to node ;) at time . Parameters
needed for computing the best paths include the accumulated likelihood to
any node on the FSN, the path information such as source and destination
grammar nodes for each grammar arc on the path, and word and state
durations required in order to compute duration probabilities. Based on
the above, we now present a grammar-driven FSLB recognition algonithm.

A Syntax-Directed FSLB Algorithm

Step 1. Perform initialization for all nodes and traceback buffers
Step 2. Perform optimal path building frame-by-frame
For every input speech frame (while not end of utterance)
Perform feature extraction (FE)
Compute local likelihoods (LL) for all states
For every grammar node in the network (level loop)
For every predecessor grammar node
For every arc berween them (word model loop)
Perform local DP for every internal node (DP1)
Update path likelihood and path information
Perform path merging DP (DP2)
Update accumulated path likelihood and path information
Update accumulated traceback buffers
Step 3. Perform post-processing and backtracking (PP/BT)
For every terminal node
Perform duration scoring post-processing
Perform traceback to identify recognized string
Step 4. Determine the recognized string

The modules of the FSLB algorithm are arranged in the block diagram
shown in Fig. 1. Modules FE, LL, PP and BT are essentially the same as
those in the LB algorithm. The "Update” module uses the local
likelihoods computed in the LL module to update the accumulated
likelihoods of the optimal paths to all the internal nodes. We will now
describe modules DP1 and DP2 in more detail in the following sections.

3.1 A Modified Intra-word Viterbi Decoding Algorithm

Conventional Viterbi decoding algorithms for finding the best
decoded sequence for a given hidden Markov model are readily available
in the literature. The duration scoring strategy is often not incorporated
into the algorithm. We will now modify the Viterbi decoding algorithm
to include all possible state and word duration probabilities and word
transition probabilities so that all the probabilities can be incorporated in
the forward search scheme either before or after paths are merged at the
nodes of the FSN. Depending on the desired duration scoring strategies,
we can simply associate proper cost to the arcs of the word-level HMM
network. The post-processing duration scoring scheme in [12] can be
accomplished in the FSLB by associating a word duration penalty for
transversing the arc connecting the rightmost node of the word model and
the right grammar node (RG) in the forward search and by assigning a
state duration penalty to the same arc and incorporating the state duration
penalty at the end of the utierance for post-processing. We will discuss,
in more detail, various ways of incorporating duration information into
the FSLB algorithm in Section 5. As for the word transition penalty, it
can be based on some simple word transition rules or a complex language
model [15]. The word transition penalty can be easily incorporated by
associating a penalty for transversing the arc conpecting the left grammar
node (LG) and the leftmost internal node of a word model. This cost



depends on the previously decoded words on the best path entering the
left grammar node.

3.2 A Grammar Level Path Merging Algorithm

Grammar nodes on a petwork allow paths reaching that node to
merge so that only a limited number of the paths are allowed to grow to
the next level. They also provide branching to the higher levels. If only
the optimal path is desired at each of the terminal nodes of a grammar
nerwork, then path merging at a grammar node eliminates all non-optimal
paths reaching that node. The grammar level path merging algorithm
proposed here is similar 10 eq.(11) in [12] where an optimal path is
selected at a level boundary. For a general grammar metwork, we not
only need a backpointer array to indicate how long the best path reaching
node g has stayed in the best arc, we will also need a node backpointer
array to indicate the left grammar node of the best arc reaching that
grammar node.

4. SEARCH FOR THE GLOBALLY SECOND BEST PATHS

By definition, the globally second best path to any grammar
node, in a finite state network, is different from the globally best path to
that node, in the sense that the decoded strings should be different.
Since the search is only focused on the grammar node level, rather than
on the internal node level. there is very little additional computation
required. Similar to the search strategy for the optimal path, searching for
the second best path to any grammar node can be accomplished
sequentially by computing the second best path to that grammar node at
any time ¢. The second best path information required is also similar to
what is needed for the optimal path.

The algorithm proposed here to search for the globally second
best paths to every grammar node in the finite state network can be
formulated based on a concept extended from the principle of optimality.
It states that the second best path to any grammar node g, at time ¢, is
either path P,(g) or path P,(g) defined as follows. We define 1(g) and
2(g) 10 be the globally best and second best paths reaching grammar node
2. and 1°(g) and 2'(g) 1o be the locally best and second best subpaths
(arcs) on the locally best and second best paths reaching grammar node g.
From the principle of optimality, the best path is composed of the locally
best subpath 1'(g)=a of duration bp(a) and the best path 1(i) reaching the
left grammar node i=LG(a) of arc a at time (i)t —elapse(a). Whereas
the candidate path P;;(g) is composed of the locally second best subpath
2'(g)=b of duration elapse(b) and the best path 1(j) reaching the left
grammar node j=LG(b) of arc b at time t(j)=t—elapse (b); the candidate
path P,;(g) is composed of the locally best subpath 1'(g) and the second
best path 2(i) reaching grammar node i at time ¢(i), Nodes i and j can be
the same, and word durations elapse(a) and elapse(b) can also be the
same; however the arcs a and b should be different to guarantee the
complete second best string be different from the best string.

In the FSLB algorithm proposed in Section 3, we only allow the
optimal paths at time (¢—1) to be used in constructing the optimal paths at
tdme ¢ If we also allow other candidate paths to construct paths in the
next level, as was performed in the LB algorithm to obtain multiple
candidate strings, then the amount of search will increase proportional to
the number of candidate paths retained. It tumms out that P5(g) is the
second best path among all other paths if paths can only be constructed
from the local best opes. Similarly, P,;(g) is the second best path if
other candidate paths are allowed to grow before they are pruned when
merging at the grammar node LG(a) at time ¢-elapse(a). The algorithm
proposed here extends the property of the principle of optimality in that
only paths P,(g) and P, (g) are compared. As a result, the algorithm
requires no additonal search computation, and only some additional
bookkeeping is required The traceback information and duration
probabilities of the globally second best paths are managed similar to that
of the globally best paths.

5. INCORPORATION OF DURATION PROBABILITIES

When intra-word state duration 1s properly incorporated, the
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HMM duration models in [10-11] seem to improve performance on some
recognition applications.  Since those explicit duration models
significantly increase the computation and storage associated with scoring,
a simple alternative s to account for the state duration in a post-processor
after the level building search is completed [12]. In the following, we
focus our discussion on how to incorporate both the word and state
duration probabilities into the HMM scoring and network search. The
reader is referred to the modeling approaches in [10-12] to leamm how to
model the word and state durations and how to assign weights when these
duration penalties are incorporated in the HMM scoring.

We have shown in Section 2 how duration penalties can be
represented in the network search by associating proper cost to arcs oa a
finite state network. In Section 3.1 we have also formulated a general
strategy showing how the duration penalties can be incorporated in the
modified Viterbi decoding algorithm. The way duration penalties are
incorporated depends on the HMM scoring strategy in the network search.
If they are to be used before the paths merge at a certain node in the
oetwork, then they should be added to the path likelihoods before the
paths are compared and pruned. If the scoring scheme requires the
duration penalties to be included only at the end of the utterance, then a
separate buffer is needed to save the additional duration information so
that they can be imposed by a post-processor.

The word duration probability is usually included at the end of a
word (strategy W), therefore candidate paths with unlikely word
durations are more likely to get pruned even when the path likelihoods
are reasonable. However, we can impose the word duration at the end of
an utterance and use a post-processor to handle the additional information
before the best candidate path is selected (strategy W2). We can also use
normalized word durations or normalized accumulated word durations in
the scoring or not use any word duration information at all (strategy WO0).

The state duration probability can be included at the end of a
state (strategy S1), at the end of a word (Strategy S2), or at the end of an
utterance (Strategy S3) by using a post-processor. We also can use either
normalized state durations within a word or mormalized accumulated state
durations within a word. We can also avoid using the state duration
information (Strategy SO).

In the following, we compare performance using different
combinations of the word and state duration scoring strategies. The task
iovolved is speaker-independent connected digit recognition. The
database used in the evaluation is the TI speaker-independent connected
digit database. The feature vector used in the experiment is a
combination of 12 weighted LPC cepstral coefficients [16], and 12 delta-
cepstral coefficients [17]. The state observation densities are
characterized by a multivarate mixture Gaussian density [18]. The
HMM training is described in more detail in [12], where a segmental -
means algorithm was used to estimate the HMM parameters via a -
means clustering techniques. In this specific experiment, the test
vocabulary consisted of 11 words, namely 10 digits plus the word "oh".
To characterize each word, we use 3 models per word, 10 states per
model, and 9 mixtures per state.

Six different duration scoring strategies were tested. These
included the following: (1) W0+S0, where no duration information was
used; (2) W1+S0, where state duration was not used while word duration
was scored at the end of each word: (3) WO0+S2, where word duration
was not used but state duration was used at the ead of each word; (4)
W1+83, the current post-processing strategy in [9]; (5) W1+S2, where
both word and state durations were imposed at the end of each word; and
(6) W1+S1, where the word duration was incorporated at the end of each
word and state duration was incorporated at the end of each state. The
test results are listed in Table 1, where 8,578 variable length strings were
tested. The results in the row labelled UL shows the string error rates if
the length of the tested string length is unknown, and the results in the
row labelled KL gives the string error rate if we know the length of the
tested string. As shown in Table 1, there is only a slight statistical
difference among all the duration scoring strategies tested.



WO0+S0 | WI4+S0 | W0+S2 | WI+S3 | Wi+82 | Wi+S1
UL 3.28 321 315 312 312 321
KL 1.81 1.71 1.68 1.64 1.63 1.69

Table 1. String error rates for various duration scoring configurations

6. CONCLUSION

In this paper, a frame-synchronous level building (FSLB) algorithm is
proposed for recognizing connected sequences of words. The algorithm is
essentially a frame-synchronous implementation of the conventional level
building (LB) algorithm and therefore the FSLB algonthm yields exactly
the same numenical results as the LB algorithm. However, in contrast to
the LB algorithm which decodes optimal strings at the end of an utterance
on a level-by-level basis, the FSLB algorithm performs the maximum
likelihood string decoding in a network on a frame-by-frame basis so that
the optimally decoded partial strings are immediately available at any
time. The FSLB algorithm also offers a number of advantages over the
LB algorithm, namely: (1) The FSLB algorithm is highly regular, which
makes it easy to implement on geperal or special purpose hardware; (2)
the FSLB algorithm is highly modularized so that the local likelihood
computation and the local Viterbi decoding for each word model can be
performed in parallel, which makes it attractive for distributed
computation among multiple special-purpose processors; (3) for decoding
a given finite state grammar petwork, at time ¢, the FSLB algorithm uses
only the information about the optimal paths at time (¢~1) plus the
observation vector at time ¢ to search for the optimal paths and to update
the accumulated path likelihood so that the memory requirement is greatly
reduced; and (4) multiple candidate strings, e.g. the globally second best
strings, can be obtained easily even for a very complicated grammar
network. In addition to the simplified search strategy, the FSLB
algorithm also has the flexibility that all the word and state duration
scoring techniques, e.g. the state duration postprocessing model used in
the LB algorithm, can be implemented simply, efficiently and directly in
the forward search. Word transition rules, such as a language model, can
also be easily incorporated.
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Figure 1. A block diagram of the FSLB recognition algorithm



