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Abetract. Speaker independent recognition of small vocabularies,
spoken over the long distance telephone network, has been
demonstrated to be a viable technology. For most tasks it is generally
assumed that users will be cooperative and only speak the predefined
vocabulary words in isolation. Recently, a large scale trial of speaker
independent isolated word speech recognition technology was carried
out in Hayward, California. The task chosen required that users
speak, in isolation, one of five defined vocabulary words (collect,
calling-card, person, third-number and operator). At ICASSP-88 [1],
we presented recognition results which showed that when users spoke
the vocabulary words in isolation, they were correctly recognized

significantly easier than the gencral case of keyword spotting in fluent
speech. In the gencral case, the spotting system is presented with
continuous input and must make a decision whether or not any of the
keywords is present anywhere in the speech. For our task, it is known
that for each spoken input a single one of the keywords has been
spoken.

While much research has been performed on the general
wordspotting task, very little of it has been published. Most of the
techniques that have been described in the literature are template-
based dynamic time-warping approaches (DTW) [9-11]. In (9],

about 99% of the time. However, observation of customer responses
during this trial indicated that about 20% of the utterances had the
desired vocabulary item along with extraneous input which ranged
from non-speech sounds to groups of non-vocabulary words (e.g. ‘I
want to make a collect call please’). Most recognition algorithms have
not been designed to handle this type of input. As such, a
modification of the algorithms had to be made to recognize selected
vocabulary words bedded in speech (i.e. a form of keyword
spotting). For our task, it was assumed that for each spoken input,
which consisted of a period of background signal, speech, and another
period of background signal, a single one of the keywords was spoken.
As such, this form of word spotting is a significantly easier task than
is usually associated with keyword spotting in fluent speech.
Recognition results on the keywords embedded in speech were 87.1%.
To achieve this performance we used several robust training methods
as well as detailed analyses of state-level likelihood and duration
scores.

1. Introduction

The development of robust, speaker-independent, speech
recognition systems that perform well over dialed-up telephones line
has been a topic of interest for over a decade [1,4-7). This work has
progressed from systems that can recognize a small number of
vocabulary items spoken in isolation [3,5,7], to systems that can
recognize medium size vocabulary sets spoken fluently, [4). A basic
assumption for most speech recognition systems is that the input to be
recognized consists solely of words from the recognition vocabulary
and background silence. However, previous studies on the recognition
of a limited set of isolated command phrases for making “operator
assisted calls” have shown that it is extremely difficult, if not
impossible, to get real-world subscribers to such a service to speak
only the allowed input words [1,5,6). In a large scale trial of speaker
independent, isolated word, speech recognition technology, carried out
at an AT&T central office in Hayward, California (i.e. the San
Francisco Bay area) [1,8], live telephone customer traffic was used to
cvaluate the call handling procedures being developed for a new
generation of telephone switching equipment. Using these procedures,
customers making operator assisted calls were given the option of
verbally identifying the type of call they wished to make (i.e. collect,
calling-card, person-to-person, bill-to-third, and operator). Each caller
was requested to speak one of the five orally prompted commands in
an isolated fashion. While 82% of the users actually spoke one of the
command words, only 79% of these inputs were spoken in isolation
(i.e. only 65% of all the callers followed (he protocol). Monitoring of
the 's T indicated that 17% of all responses

da vahd bul y item along with extraneous speech input
(c.g. I want 1o make a collect call please). Most conventional isolated
word recognition algorithms have not been designed to recognize

y items bedded in various carrier sentences. As such,
modlﬁcatlons to the algorithms had to be made to allow for the
recognition of words embedded in speech (i.e. a form of keyword
spotting).

In this paper we discuss the problem of recognizing a small set of
words spoken in the context of unconstrained input. The task is

Christi and Rushforth describe a speaker trained keyword
spotting system which uses an LPC representation of the speech signal
without any syntactic or semantic information about the task. Using
this approach they achieved good results on a vocabulary set of four
words and the ten digits. Myers er al [11] discussed an approach
which used a local minimum DTW-based algorithm for the problem of
word spotting. However the proposed system was not evaluated on
any real task. Higgins and Wohlford [10], also proposed a DTW-
based system for keyword spotting. In their system, knowledge about
the vocabulary and syntax of the input speech was used. A set of
keyword templates and non-keyword templates were created and
compared against several pooled filler templates (where filler templates
were created from clustering a large set of non-vocabulary word
speech utterances) as to their ability to detect keywords in fluent
speech. Their results indicated that while explicit knowledge of the
vocabulary may not be that important, the use of filler templates may
be important.

A significant amount of progress has been recently made in
automatic speech recognition using hidden Markov modeling (HMM)
[12-15]. Since the HMM approach uses a statistical parameterization
of the signal, it should contain more information about the signal than
the DTW-based approach. As such, we chose to develop an algorithm
using HMM technology to attack the problem of recognizing a small
set of vocabulary words in fluent speech.

2. HMM-Based Recognition Algorithm

Figure 1 shows a block diagram of the HMM-based recognition
system. The key elements of the system include:

2.1 LPC and Cepstral Analysis

Speech is first digitized at a 6.67 kHz rate and filtered to a2
bandwidth of 200 - 3200 Hz. The digitized speech is then
preemphasized using a simple first-order digital filter with a
preemphasis factor @ = 0.95, and blocked into frames of 45 msec in
length with a shift between frames of 15 msec. Each frame of speech
is weighted by a Hamming window. An 8-th order linear predictive
coding (LPC) analysis is then performed on the data. Thus, for each
frame, a set of eight LPC coefficients is generated. The input signal
is then reduced to a sequence of LPC frame vectors. There is no
automatic endpoint detection performed on the data. The LPC
derived cepstral vector is then computed up to the Q™ component,
where Q > p, and Q = 12 in our implementation.

The Q-coefficient cepstral vector, c.(m), at time frame ¢ is
weighted by a window, W.(m), of the form:

Wo(m) = 1+-§-sin[%],15msg m

to give:
Cem) = ce(m)- W (m) ®@

It has recently been shown that by extending the analysis vector to
include spectral derivative (in time) information, performance of
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scveral dard speech r s improved significantly [13]. As
such we include such spectral derivative information in our analysis
vector as follows.

The time derivative of the seq of weij pstral vectors is
approximated by a first order orthogonal polynomlll over a finite
length window of (2K + 1) frames, centered around the current vector.
(K = 2 in our implementation; hence the derivative is computed from
a 5 frame (75 msec) window.) The cepstral derivative (i.e. the delta
cepstrum vector) is computed as

X
Ace(m) = [ > ké,-,,(m)] ‘G, 1sm=Q [€))
k=-X

where G is a gain term so that the variances of ¢,(m) and A é,(m) are
about the same. (For our system the value of G was 0.375.)

The overall observation vector, Oy, used for scoring the HMM's is
the concatenation of the weighted cepstral vector, and the
corresponding weighted delta cepstrum vector, i.e.

O = {Ec(m), AEe(m)} “

and consists of 24 coefficients per vector.
2.2 Structure of Hidden Markov Models

Figure 2 illustrates the structure of the HMM’s used to characterize
individual words as well as the background noise. The models are
first order, left-to-right, Markov models with N states. Each model
consists of the following parameters:

(1) a state transition matrix, A = a;; with the constraint that

ay=0j<i,jzi+2 (5)
(i.e. we allow transitions from state j only to itself, or to state
j+ b
(2) a continuous mixture density matrix B = by(x) of the form
I's
b(x) = T cmyNIX, pmss Upy) ®
m=1

where x is the input cepstral vector, c,, is the mixture weight for
the mth component in state j, |, is the mean vector for mixture

m in state j, and Uy, is the covariance for mixture m in state j.
All evaluations described in this paper used diagonal covariance
matrices. In our evaluations, the number of states per model
was set to 10 and the number of mixture components per state,
M, was set to nine. (Several other values for N and M were
evaluated.)

(3) a set of log energy densities, p,(e), where € is the dynamically
normalized frame energy, and p; is an empirically measured
discrete density of cnergy values in state j.

(4) a set of state duration probabllmcs, p,('r), where 7 is the number
of frames spent in state j, and p_, is an empirically measured
discrete density of duration values in state j.

2.3 Model Alignment Procedure

A sequence of spectral vectors for the unknown speech signal is
matched against a set of stored reference models (hidden Markov
models) using a Viterbi algorithm. This matching occurs at each
frame of the input signal, thereby generating a sequence of best
matches for each frame. This approach, similar to the one used in the
template-based system described by Christiansen and Rushforth [9],
can be thought of as sliding the input speech past each model in a
continuous manner. The HMM-based approach uses a frame-
synchronous Viterbi decoding procedure, described by Lee and

pGi )= x+l E m, (k) @]
where m, (k) is the aligned likelihood score at frame & for candidate
c(i, j), and
N
s, j) = N T s (m) ®
a=]
where s, (n) is the aligned average state likelihood in state n, for
candidate ¢ (i, f).

Because of the exponential state duration constraints inherent in
the HMM formulation, there is little limitation as to how long a
portion of an utterance can stay in a particular state. During the
Viterbi alignment process, it is possible for the spectrum of the input
utterance to match the spectral density in some of the states in the
model well and match the spectral density in other states poorly. Asa
result, an alignment path may remain in one or more states for a very
long duration (with a very good likelihood score) and stay a realively
short period of time in the remaining states (with a very bad
likelihood score). When this happens the total likelihood score for the
entire utterance will be high, but the average state likelihood will be
low.

The outputs from the model alignment process, c(i, j), p(i, /),
and s(i, j), are then used in the postprocessor, which tests the output
sequence for valid candidate words.

2.4 Postprocessor

arq 1

The output is subjected to validity testing to
eliminate unlikely candidates. The postprocessor chooses the most
likely word from the remaining candidates. The following tests are
made (in the order specified):

1. Duration test - The duration of each candidate must be within a
predefined range. In our tests we set the minimum duration to
25 frames (375 msec) and left the maximum duration
unspecified.

2. Energy level test - The log energy of the utterance is first
normalized so that the minimum log energy is 0dB. The
maximum normalized energy level within the boundaries of the
candidate word at frame i/ must be greater than some predefined
threshold (in our tests the threshold was set to 30 dB). This test
serves to eliminate word matches to background signal.

3. Average model likelihood test - The likelihood measure
associated with the candidate word at frame | must exceed some
predefined value. This threshold was set to 5.0 in our
experiments. Typical model likelihood scores generally fall in
the range 5.0-20.0 for the training data.

4. Ratio of average model likelihood to average state likelihood -
The ratio of the average model likelihood to the average state
‘likelihood was tested to see if it fell in the range

0.65 = ratio = 1.35 ()]

If it fell outside this range the candidate word was eliminated
from consideration. This occurred when the model match in a
smail number of the word states was very good, and the model
match in the remaining states was very bad. Such matches were
considered unreasonable.

If, after applying these tests, more than one candidate still remained
the recognized word was chosen as the candidate with the highest
average state likelihood score. If no candidates remained after
postprocessing, the utterance was rejected and no decision was made.
no recognition decision will be made.

Rabiner [14], to perform the time alignment. For every b
frame, {, a Viterbi alignment is generated for every possible endmg
frame j to produce a candidate ¢ ({, j) based on the best aligned model
likelihood. The candidate c(#, j +1) is obtained frame synchronously
using the alignment information generated in producing c(i, j) plus
the local likelihood measure at frame j+1.

For every pau- of beginning and ending frames, i and j, the
li e prod a word didate c(i, j), with average
model hkehhood p (i, j) and average state likelihood s (i, j) defined as
follows:

2.4.1 Examples of Recognition Outpus

Figure 3 shows a plot of the recognition output from the model
alignment procedure for the utterance: Uk, calling-card please, where
the word calling-card is the keyword to be recognized. In Figure 3a,
the best total likelihood score (solid line) for each frame of the input
signal is shown along with the average state likelihood score (dotted
line). Figure 3b shows a normalized log-energy contour and Figure 3¢
shows the top recognition candidate at each frame of the input. As
discussed in the previous section, we see that very good scores are
generally obtained in the background silence regions of the recording
interval. However, the average state likelihood scores in the
background region are much lower than the total likelihood scores.
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For example, the total likelihood scores for frames 125 through 150
are much higher than those computed during the speech interval.
Figure 4 shows similar plots after applying the postprocessing rules.
(The horizontal lines in Figure 4b indicate the region where the
recognized word was detected (spotted)). These figures show that,
after postprocessing, only two valid candidates remain. A final
recognition choice of the word calling-card was made because of its
higher average state likelihood score.

3. Experimental Database

A speech database, consisting of approximately 75000 utterances,
was collected during a large scale trial of speaker independent isolated
word recognition technology, carried out at an AT&T central office in
Hayward, California. The five word vocabulary defined for this task
was, collect, calling-card, third-number, person and operator. Each
utterance was ob d from a teleph t during the course
of a normal operator assistance call. Each caller was automatically
prompted {(by a voice response system) to speak one of the five
keywords in an isolated fashion. During the trial about 17% of all
customer responses contained a valid vocabulary word along with
extraneous input which ranged from non-speech sounds, such as
background music or TV sounds, to groups of words outside of the
vocabulary, e.g. I want to make a collect call please.

Of the 75000 collected utterances, 7981 were digitized and used for
experimentation. Table 1 shows the distribution of the digitized
utterances that were used in our recognition experiments. Each
customer’s utterance contains only one of the vocabulary items.
Roughly, half the utterances in each category were used for training;
the other half were used for testing.

4. Recognition Results

Several different word HMM’s were created and tested. Since
extracting keyword tokens from continuous speech is a long and
tedious job, one set of hidden Markov models (one model per word)
was trained (using a segmental k-means training algorithm [15]) using
only the isolated utterance data. The problem with this type of word
training is that it does not account for any the coarticulation effects
nor any of the word duration shortening effects that occur when the
words are embedded in connected speech. Therefore, word models
were also generated from word data excised by a trained listener from
the connected portion of the database. (These tokens were also used
to create one HMM per word). Additionally, a third set of word
HMM’s was created by pooling together the isolated word and the
embedded word data. Table 1 shows that 3283 tokens were used to
train the first model set and only 755 tokens were used to train the
second model set.

Table 2 presents the results of a series of recognition tests
performed on the portion of data where a keyword was spoken along
with extrancous input. The results using the isolated utterance
training database show that 87.2% of the utterances were correctly
recognized with a 10.3% error rate and a 2.4% rejection rate. The
recognition accuracy using the embedded utterance training set was
86.1% correct rate with 12.8% errors and 1.1% rejections, This result
compares favorably with the previous result, since the training set was
only about one quarter the size. The recognition accuracy obtained
using models trained from the 4038 token combined database (86.7%)
was slightly lower than that obtained using each of the two training
data sets individually.

In Reference 12, Wilpon and Rabiner showed that explicit
endpoint detection could be removed entirely from the recognition
system while maintaining high recognition accuracy. To achieve this,
the recognition system modeled the incoming signal as a sequence of
background signal and vocabulary words. In ICASSP-88 [1], the
portion of the database containing only isolated word input was tested
on this algorithm and achieved a word accuracy rate of 98.9%. It was
initially thought that this approach would extend naturally to the case
of vocabulary words embedded in fluent speech, if a good model for
the extraneous speech could be obtained. However, when this
algorithm was tested on the embedded portion of the database, using
the model for background noise described in [12}, it achieved a word
recognition rate of only 64.3% (as compared to the 87.1% recognition
rate discussed previously). Therefore, the error rate on the entire
database was 7.7% with no rejections. Using the keyword spotting
algorithm described in Section 3, a recognition rate of 94.0% (with a
4.0% error rate and a 2.0% rejection rate} was obtained on the
isolated portion of the database. Therefore, for the entire isolated and

embedded speech database, 4.9% of the utterances were mis-
recognized with a 2.3% rejection rate.

The results achieved in these keyword spotting experiments are
encouraging. However, some of the robustness issues related to the
HMM formulation must be carefully investigated in order to obtain
better performance. We have found the use of word duration, energy,
and average state likelihood to be helpful in reducing the number of
possible false alarms. We have found that the use of average state
likelihood also improves the overall recognition performance. It
should be possible to incorporate more state-level constraints, e.g. as
minimum and maximum state duration, into the recognizer.
Additionally, we are not currently using any information about the
syntactic or semantic constraints imposed by the recognition task (as
was suggested by Higgins and Wohlford [9]).

5. Conclusion

In this paper we have presented an algorithm based on hidden
Markov models which can recognize & pre-defined set of vocabulary
items spoken in the context of fluent speech. We have shown that, for
a vocabulary of five words, we can correctly recognize 87.1% of
keywords when they occur in fluent speech and spoken over the long
distance telephone network. While the task that we are concerned
with is significantly easier than what is normally associated with
keyword spotting in continuous speech, it does address an important
problem that must be solved for successful deployment of speech
recognition technology.
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Words Spoken | Words Spoken
as Isolated as Part of a
Utterances Connected Phrase
Vocabulary
Word Total | Training | Testing (| Training | Testing
Collect 4320 1703 1602 510 505
Calling-card 2121 910 955 133 123
Third-number 619 273 281 34 31
Person 170 77 67 14 12
Operator 751 320 309 65 57
Totals 7981 3283 3214 755 728
TABLE 1
Hayward Speech Database Distributions
Recognition Accuracy
Total Number
of Tokens in % % %
Training Data Training Set [Correct |Error |Rejected
(a) isolated tokens 3283 87.2 (103 2.4
(b) embedded tokens 755 86.1 |12.8 1.1
(c) isolated & embedded 4038 86.7 | 11.8 1.5
tokens
TABLE 2

s(n)—»

Recognition Results For Data Where A
Vocabulary Word Was Spoken Along With
Extraneous Speech
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FIGURE 1
Block Diagram of Recognition System
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Output of Recognition System after Post-Processing Stage
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