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ABSTRACT number  of mixtures in each state from 1 to 256  and found that  the  word 
The field of large continuous speech recognition has advaned accuracy inaeased from 61% to 90% which indicates that sufficient 

the point where there are systems capable of between acoustic resolution is essential for improved performance. Ihe  90% word 

90 and 95% word  accuracy  for speaker independent recogrution of a 1000 is the highest performance based On 

word vocabulary. spoken fluently for a task  with a perplexity (average units. When intraword ‘Ontext &pendency modehg is 
word branching factor) of about 60. There are several factors which incomrated3 we improved Our to 936 word accuracy’ - 
account for the high performance acheved by these systems, includmg the 
use  of  hidden Mvkov models (HMM) for acoustic modeling, the use of 
context dependent sub-word umts. the representation of between-word 
phonemic vanation, and  the  use  of corrective tnining techniques to 
emphsize differences between acoustically similar words  in  the 
vocabulary. In this p q e r  we describe one of the  large  vocabulary speech 
recognitlon systems which is being  deve1op;d at AT&T Bell Laboratories, 
and discuss the  methods  used  to provide high word recognition accuracy. 
In puticular. we  focus  on  the techniques used  to obtain acoustic models 
of t h e  sub-word units (both context independent and context dependent 
units), and discuss the  reSUhng system performance as a function of the 
t y p e  of acoustic modeling used 

1. INTRODUCTION 

In the past  few  years  there  have  been proposed a number of systems for 
large vocabulary speech recognition which  have achieved high  word 
recognition accuracy [I-61. Although a couple of the systems have 
concentrated on either isolated word  input [ 6 ] ,  or have  been trained to 
individual speakers [5,6], most current large vocabulvy recognition 
systems have  the goal of performing speech recognition on  fluent  input 
(continuous speech) by  any  talker (speaker independent systems). 

The approach to large vocabulary speech recognition we adopt in this 
study is a pattern recognition based  approach. For a detxled description 
of  the  system  we hme developed, the reader is referred to [ 7 ] .  The basic 
speech units in  the  system are modeled acoustically based on a lexical 
description of words in the vocabulary. No assumption is made, a pnorr, 
about the  mapping between acoustic measurements and phonemes; such a 
mapping is entirely learned v u  a finite mining set of utterances. The 
resulting speech units, which  we call phone-like units (PLU’s) are 
essentially acoustic descriptions of Imguisticdly-based units as 
represented in the mor& occurring in the  given  training  set. 
The focus of ttus paper is a discussion of various methods used to create 
a set of acoustic models for characterizing the PLU’s used in large 
vocabulary recognition (LVR). The set of context independent (CI) units 
we used in this study is a fixed set of 47 phone-like units (FLU’S), in 
which  each PLU is associated with a linguistically defined  phoneme 
symbol. We  model  each CI PLU  using a continuous density  hidden 
Markov  model  with a Gaussian mixture state observation density. Each 
word  model is defined as the concatenation of  the PLU models according 
to a fixed  lexicon  defined by the set of 47 associated phoneme symbols. 
We also consider a set of context dependent (CD) units which includes 
PLUS’ defined  by left, right and  both left and right context. 

We  tested  the recognition system  on  the  DARPA Resource Management 
task using the word-pair grammar in a speaker independent mode. In the 
case of context independent acoustic modeling, we  varied the maximum 
i On leave from CSELT, To~ino, Itsly. 

2. ACOUSTIC  MODELING OF SUB-WORD UNITS 

The LVR system we are using  works as follows. The speech input is first 
filtered  from  100 Hz to 3.8 kHz, and sampled and digitized at an 8 kHz 
rate, The digitized speech is then pre-emphasized. A 10‘ LPC analysis is 
performed on a Hamming-windowed speech segment of 30 msec,  and 
every 10 msec a feature vector consisting of 12 liftered cepstral 
coefficients and  12 corresponding time derivatives is generated. The 
sequence of feature vectors are then  processed  by a word-level match 
module  and a sentence-level match  module to produce the most hkely 
recognized string. Temporal features such as log  energy  and  various 
durational features can also be  used as part of the observation vector for 
training  and recognition. 

The word-level match  module  uses  word  models generated via a lexicon 
and a set of sub-word models. In our current implementation, we use a 
slightly modified  version  of a lexicon provided by CMU. Every  word in 
the  vocabulary  is represented by exactly one entry in the lexicon, and 
each lexical entry is characterized by a linear sequence of  phone units. 
Each word model is  composed as a concatenation of the sequence of 
sub-word models according to its corresponding lexical representation. 
The sentence-level match  module uses a language model to determine the 
word sequence in a sentence. In our current implementation, we assume 
that  the language model  is represented by a finite state network (FSN). 
We  now describe the techniques used to obtain acoustic models of the 
sub-word units @oth context independent and context dependent). 

2.1 Sub-word Hidden Markov  Models 

The units chosen in our research were a set of 47 PLU’s corresponding to 
a set of 47 English Phoneme symbols. The speech units are modeled as 
left-to-right, conrinuour densiq hidden  Markov  models.  In our 
implementation, we  use 3-state models for phones and a 1-state model for 
the silence symbol.  Within each state of the HMM, the random qmtral 
vector is represenred by a Gaussian mixture density. Each mixture 
component has a > q e c t r a l  mean  and  variance  which is highly dependent 
on the spec& characteristics of  the subword unit (Le.  highly  localized  in 
the  global acoustic space). 

2.2 Training of PLU Models 

In order to train a set of sub-word PLU’s for LVR, Le. to estimate the 
“optimal” parameters of the PLU models, we need  a labeled  training set 
of continuous speech, where  the labeling consists of  an ASCII 
representation of the  spoken  text  within each utterance. To train the PLU 
models we represent each sentence in  the  training set as a (not necessarily 
unique) sequence of sub-word units  with  the option of silence between 
any  pair of words, and at the  beginning  and/or  end  of each sentence. The 
initial segmentation was created by  linearly  segmenting all training 
utterances into units and HMM states. 
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By applying a variant of the  segmental  k-means uaining procedure [7-8] 
to a set of 4360 sentences from 109 different talkers, we  obtain a total of 
155000 PLU labels. The segments  labeled silence (h#)  have  the  most 
Occurrences (10638 or 6.86% of the total) and nx (flap n )  have the fewest 
Occurrences (57 or 0.04% of the  total). In terms  of average likelihood 
scores, silence (h#) had  the  highest score (18.5) followed by f (17.7) and 
s (15.4), while ax had  the lowest score  (7.1)  followed  by n (8.3)  and r 
(8.4).  It is interesting to note  that  the  PLU's  with  the 3 lowest average 
likelihood scores (ax, n and r)  were  among  the  most  frequently occurring 
sounds (r was second, n sixth and M fourth in frequency of  Occurrence). 
Similarly some of the  sounds  with  the  highest  likelihood  scores  were 
among  the  least occuning sounds  (e.g. oy was  fourth  according to 
likelihood score but  21"  according to frequency of occurrence). These 
results almost obey a type of Zipfs law which, in  terms  of  the  PLU 
staristics, states  that  there is an  inverse relationship between  frequency of 
occurrence and ability to model  the  sound. 

2 3  Creation of Context  Independent PLU Models 

The use of  CI PLU's has  several advantages, namely: (1) the  PLU  models 
are easily Uained, (2) no smoothing is required,  (3)  the  units  themselves 
are relatively insensitive to the  context  from  which  the  training  tokens are 
extracted, and (4) the  units are readily  generalized to new contexts, e.g. 
new  vocabulary sets, new  word  pronunciations etc. However,  the use of 
CI PLU's also leads to two serious problems, namely: (1) the CI PLU's 
do not represent the  unit  well in all contexts, and  (2)  the  CI PLU's do not 
prokide high  recognition  performance  for  most LVR tasks. 

Perhaps the simplest way  of  solving  the above problems  is to improve 
the acoustic resolution of the  context  independent  PLU  models by  using 
more detailed representations of each  unit. In this paper, we focus our 
aaention on the  technique of increasing the  number of mixture  densities 
per state. The  ultimate  limitation  here is the  amount  of mining data per 
unit.  Although  some  units  have a large  number of occurrences in  the 
training set, the less frequently occuning units  will not have  enough 
Occurrences to justify a large number  of  mixtures  per state. The obvious 
solution here is to use a strategy in  which  the  number of mixtures  per 
state is a function of the size of the  training  set  and to stop  increasing  the 
number of mixtures for a given  unit  when  it  exceeds  some critical value. 
We  will  show  later  that  increasing acoustic resolution  in  sub-word 
modeling effectively improves  recognition  performance. 

2.4 Creation of Context Dependent PLU Models 

The idea behind  creating  context  dependent PLU's is to capture the  local 
acoustic variability  associated  with a known  context  and  thereby  reduce 
the acoustic variability  of  the set of PLU's. One of the earliest attempts 
at exploiting context dependent  PLU's  was  in the BBN  BYBLOS  system 
where left and  right  context PLUS were  introduced [9]. The more 
general case of  both  left  and right context  dependent PLU's represents 
each phone p --$ p L - p - p R  where pL is the  preceding  phone  (possibly 
silence) and p~ is the  following phone (possibly silence). For  the  time 
being, we assume that we  do not cross word  boundaries  when  creating 
CD models. 

The way in which  we create CD PLU  models  is as follows: we &st 
convert the  lexicon  from  CI  units to CD units, we  then uain the set of 
CD PLU's  using  the  same procedure as used  for the CI PLU's, i.e.  use 
the  segmental  k-means  training on the  expanded set of PLU's until 
convergence. The above training  procedure  leads to one  major  problem, 
namely  that  the  number of cccurrences of some of the  CD units is 
insufficient to generate a statistically reliable model. There are several 
ways of dealing  with  this problem. Perhaps the simplest way is to use a 
unit  reduction  rule of the form: if C @ L  - p  - p ~ )  < T ,  then 

1. P L - P - P R  - % - P - P R  if ~(S-P-PR) > T 

2. p r - p - p ~  - + p L - p - S ,  if c @ ~ - p - S )  > T 

3. P L - P - P R  + S - p - S  

where c ( p 1  - p 2 - p 3 )  is the  count  in  the  training  set associated with  the 
ordered triplet @I.p2.p3) ($ is a don't care phone), and T is  the  count 
threshold  for  applying  the  reduction  rule  sequentially  through  the 3 cases. 

A second way  of  handling  the  insufficiency of the data for creating 
statistically reliable CD PLU's is to  smooth  the CD models  with  CI 
models  via a technique like deleted  interpolation  [IO]. In order to use 
deleted interpolation both the CD  and  the CI models  need to be  created 
based on a common codebook (e.g. discrete observation probabilities) or 
based on a common set of  Gaussian densities (e.g. the  mixed  density 
method). A slightly different way  of exploiting ths type of smoothing is 
to use the  mixed  density  method  but  localized to each  CI  PLU. Thus for 
designing each  CD PLU, we assume  that  within  each state the  means  and 
covariances of each  mixture are the  same as those used for  the  CI  PLU 
model;  however  we adjust the mixme gains based on the actual 
occurrences of  each  CD  PLU  in  the  training set. We  can also then  apply 
a form of interpolation  which  is similar to that of deleted interpolation tn 
the mixture gains by smoothing  them  with  the CI mixture gains. This 
type  of smoothing is especially effective for models  created  from a small 
number of training  tokens (e.g. less  than  30). 

We  have therefore considered  two types of modeling algorithms for 
creating CD PLU's, based on the above discussion.  The  first procedure, 
which  we  refer to as CDZ, sets a threshold on the  minimum  number of 
CD PLU occurrences  in  the  training set and then,  independent of the CI 
phone set, builds a new set of  CD  models. The second procedure, which 
we refer to as CD2, uses  the  modi6ed traininghmoothing procedure to tie 
the  mixture  means  and covariances, and allows the use of a simple 
mixture gain  interpolation  scheme.  We  will  present results of both  these 
CD PLU  model  creation  procedures in the  next section. 

3, EXPERIMENTS AND RESULTS 

As described above, we use a finite  state  network (FSN) to represent the 
language model of the recognition task. In implementing  the FSN, we 
can  allow deterministic (word  pair) or probabilistic  (bigram  probabilities 
in context) connections between words, and  can  even incorporate word 
insertion penalties. Depending on the  preceding  decoded  word,  word 
bigram probabilities are trivially inserted at  the  beginning of every  word 
arc, and  word  insertion penalties are  similarly  easily  used  at  the  end of 
each word arc. In our tests, we  have  used  mainly  the  word  pair (WP) 
grammr, however  we present results on the no grammar (NG) case for 
comparison with results of  other researchers. 

3.1 Experimental  Setup 

For  most of our tests we used the  training  material  provided by DARPA. 
The speech database was  provided  by D M A  at a 16 kHz sampling  rate. 
We  filtered  and  down-sampled  the speech to an 8 kHz rate before 
analysis. The  first  training set, which  we  call T R 1 ,  consists of a set of 
3200 sentences from 80 talkers  (40 sentences/talker). We used three 
separate testing sets to evaluate the recognition system: 

1. TS1 - 150 sentences from 15 talkers (10 sentences/talker) [l]. 

2. TS2 - 300 sentences &om  10 other talkers  (30 sentences/talker) as 
distributed by DARPA in February  1989. 

3. TS3 - A set of 160  randomly selected Sentences  from  the set of 
3200 uaining sentences (2 from each of the 80 talkers). 

A second  training set  was also used consisting  of  4360  sentences  from 
109  talkers  (40 sentences per talker).  We call this  training set TR2 (109). 
The 109  talker set overlapped the 80 talker set (TRl) in  that 72 talkers 
were  common to both sets. The  remaining  37 talkers in TR2 partially 
overlapped the  talkers in TS1 (150).  Hence  we  only  use  test set TS2 in 
evaluating models  trained  from TR2. 

3.2 A Beam Search Recognition Algorithm 

The way  in  which  the  recognizer  was  implemented  was to use the FSN 
directly  and to keep track  of  the  accumulated  likelihood  score to each 
node in the network. In the current implementation,  the  network  has on 
the  order of 20,000 E+" states and  word junction nodes to keep  track  of 
at each frame of  the input. To  reduce computation, a frame-synchronous 
beam search  algorithm is used  in  which  the  best  accumulated  likelihood, 
L', is determined, at each frame, and  based on a threshold, A, all nodes 
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whose accumulated likelihoods are less  than (L * -A) are eliminated  from 
a list of active nodes. A key issue is then  how to set A so  as to eliminate 
a high percentage of  the possible paths, but not  to eliminate the ultimate 
bes t  path. Our results show  the need for  an  adaptive beam width 
algorithm so that the required  search computation can  be  reduced  while 
maintaining good  performance.  Such a procedure does not yet exist. 

3.3 Results with CI PLU Models 

For the  basic CI 47 PLU set we used mining set TRl and  iterated  the 
segmental k-means procedure until convergence (10 iterations  from a 
uniform initialization). We  then  used  the  resulting  segmentation  into 
units to design  model sets with  the  nominal  maximum  number of 
(diagonal covariance) mixtures  per  state  varying  from 1 to 256 in several 
steps. The resulting models were run on the 3 test sets for  the 991 word 
DARPA  task  using the WP grammar, and the  word  recognition accuracies 
as a function  of  the  nominal  maximum  number of mixtures per state are 
given in Table 1. It can be Seen that  large  improvements  in  word 
recognition accuracy are obtained as the  number of mixtures/state, M ,  is 
increased from 1 to 18 (about 20%  for  each of the 3 test sets). However 
as M is  increascd  even further, from  18 to 75, word accuracies increase 
much less rapidly (by 2.2% for TS1, 4.6% for  TS2  and  4.8%  for TS3) for 
all 3 test sets. Beyond M = 75, performance essentially bottoms off for 
both independent test sets (TSl and TS2) and increases by 2.0% for TS3 
(the training set). This result shows that by increasing  acoustic resolution, 
performance continues to increase so long as there is sufficient  training 
data (as is the case for  47 CI PLU’s). It is also noted  that  for TSl (open 
test), we achieve close to 90% word  accuracy  by  simply  using  the  set  of 
CI PLU’s. 

Nominal  No. 
of Mixtures 

RECOGNITION TEST SET 

Per State TS3 (TRAIN) TS2 (FEB89) TSl (150) 

1 64.7 

88.5 80.8 87.5  18 

82.9 78.1 82.9 6 

67.8 61.3 

36 88.3 83.9 90.1 
75 89.7 

95.3 86.0 89.6  256 
94.2 85.0 89.9 128 
93.3  85.4 

‘ 3  

85.6 ! 79.6 83.8 9 

79.2 72.4 76.7 

Table 1. Word recognition accuracies (%) for TSI, TS2, TS3 
using  the  47  CI  PLU  models  derived  from  the 80 talker  training  set 

3.4 Results with CD PLU Models 
Using  the CD1 method of creating CD PLU’s (i.e. by setting a threshold 
of 50 Occurrences  of  each inuaword left  and right context dependent  PLU 
and backing down to inmword left  and/or  right  context dependent PLU’s, 
and/or context independent PLU’sj, a set of 638 CD PLU’s was created 
from  the 80 talker !mining set, TR1. The composition  of  the 638 CD 
PLU set was:  304  left and right context PLU’s, 150 right-context PLU’s, 
137 left-context PLU’s, and all 47 context independent PLU’s. 

For this  638  CD  PLU set, models  were created with 9, 16, and 32 
mixtureshates. Initial model estimates were  obtained  from  the  47  CI 
PLU segmentations, and  the  segmentation  was  then  iterated  2-4  times  for 
each different size model. Recognition results on the three test sets are 
given  in Table 2. It can  be seen that  the  word  recognition accuracies 
increase by 4.2% for TSl, 4.7% for  TS2  and 5.4% for TS3 as the  number 
of mixtures/state goes from 9 to 32 (32 was  the  largest size model that 
was reasonable to !q on this data). 

Next  we created context dependent  PLU sets using  the  CD2  method 
where  we  used  the  256 mixturdstate CI  PLU  model as the  base  model 
and  varied  only  the  mixture gains in each  state of each CD PLU. CD 
PLU sets were  created  with  count  thresholds of infinity (47 CI PLU set), 

Nominal  No. E S T  SET 
of Mixtures 

92.3 89.7 97.9 
32 92.7 89.9  98.7 

Table 2. Word  recognition accuracies (%) for 638 CD1 PLU set 

50 (638 CD PLU set), 30  (915  CD  PLU set), 10  (1759  CD  PLU  set)  and 
1 (2340 CD PLU set) using  the 80 talker  training set The resulting 
models  were  tested  based  on  raw mixture gains, as estimated entirely 
from  training set tokens of  each CD PLU, and  with  smoothed mixture 
gains, as estimated by interpolation of the  CI  PLU  mixture gains with the 
CD PLU  mixture  gains. Estimates of  the smoothing factor for  each state 
of  each CD PLU were  obtained enfirely from training data The results 
on these s e ~  of units are given  in Table 3,  for  the  word  pair  grammar. It 
is clear that  for count thresholds of 1 and 10, the results obtained  from 
smoothed parameters are better  than  those  from  the  raw  parameters  for 
both TSl and  TS2 data This is to  be  expected  since  the  amount of 
training data for many of  the CD PLU’s  (Le.  those  with less than  10 
occurrences) is inadequate to give good  mixture  gain estimates, and the 
smoothing  helps a good deal here. For count thresholds of 30  and 50 
there is a small  performance advantage for the raw  parameters models, 
but here  the differences in  word  accuracy are relatively  small. 

Number 

97.4 89.9 93.3 97.6  88.2  91.4  2340 1 

TS3 TS2 TS1 TS3 TS2 TSl PLU’s  Threshold 

Smoothed  Models  Raw Models 
Count of CD 

10 97.2 90.6 I 93.3 97.4 89.3 92.6 1759 
30 

97.0  90.8 92.9 638 50 
97.1  90.3 93.2 915 

47 - 95.3 86.0 89.6 

Table 3. Word  accuracy (%) based on CD2 PLU’s derived  from TR1 

3.5 Summary of Results 
A summary of the  best  performances of the three types of PLU units, CI 
PLU’s, CDl PLU’s and  CD2 PLU’s, as  discussed in this  paper is given 
in Table 4. The results show a steady improvement in performance in 
going from 47 CI PLU’s to 638 CD  PLU’s  for all 3 test sets. Although 
the  CD2  method  of creating CD PLU’s provides small improvements in 
performance for TS 1 and TS2, the sentence accuracies are not  higher with 
this method. 

Table 4. Detailed  performance  summary  for W grammar 
for CI  and  CD  PLU  models  derived  from TRl 
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1. DISCUSSION 

The results presented in the previous section show  that  proper  acoustic 
modeling  of  the  basic sub-word recognition  units is essential for  high 
recognition performance. Although  the  performance  of the resulting 
system on the  DARPA Resource Management  System is good, there is 
still a great deal that needs to be done to make such a recognition  system 
practically useful. In this section we  first discuss how  the results 
presented in this  paper compare to those of other researchers workmg on 
the same task Then  we discuss the areas that  we  feel  would be most 
fruitful for further research. 

4.1 Comparison of Results 

Since a large number of research groups are using  the  DARPA Resource 
Management Task as a standard traininghest set, it is relatively 
straightforward to make direct comparisons of performance scores. 
However, before doing so. it is appropriate to point  out  that, aside from 
system differences, there are often a number of methodology differences 
that  could  significantly affect the results. When appropriate we  will  point 
out these differences. 

For TS1 (150)  the most appropriate comparison is the results of Lee and 
his colleagues at  CMU (although the  SPHINX  system uses a somewhat 
larger training set of 4200 sentences from  105  talkers than used here). 
Based on the results presented in [l], using 3 codebooks, duration, 
function word  phones,  and generalued hiphones (simllar to CD PLU’s 
discussed here),  Lee obtained 93.7% word  accuracy  with  the WP 
grammar on TS1 (150), and  70.6%  word  accuracy  with  the NG grammar 
[l]. These results are comparable to the 93.3% word  accuracy  obtained 
for a 1759 CD PLU set on TS1 with the WP grammar  and  72.1%  word 
accuracy  obtained  for a 2340 CD PLU set with  the  NG  grammar. More 
recently, Lee et al. [ l l ]  have incorporated inter-word  unit  modeling  and a 
form of corrective W i n g  to significantly  improve  recognition 
performance. Their current results for TSl are 96.2% and 81.9% word 
accuracies with the WP and  the NG grammars respectively. 

For comparisons of performance on the TS2 (FEB89) test set, 
performance scores from  CMU (La- et a[.), SFU (Murveit et al.), LL 
Paul) and MIT (Zu et a!.) were  recently  reported  on  at a DARPA Speech 
and  Natural  Language  Workshop (February, 1989).  The  reported  word 
and sentence accuracies along with our results are: 

Lab Training Set Size Word  Accuracy Sentence Accuracy 

CMU 109 Talkers 93.9 65.7 
AT&T 109 Takers 91.6 57.7 
SFU 109 Talkers 91.2  57.3 
LL 109 Talkers 90.2  55.7 
MIT 72 Talkers 86.4 45.3 

It should be noted  that  the results reported by CMU, SRI and LL all used 
both intra-word and inter-word context dependent units whereas those 
reported by AT&T (as presented here) and MIT did  not  use  inter-word 
units. Further the ha system  only  used a set of  75  CI units including 
32 stressed and 32 unstressed vowels,  which accounts for  the somewhat 
lower performance scores than the other systems. The results show  that 
the CMU system outperforms the SRI, AT&T  and LL systems by about 
2.5% for  the WP grammar in  word accuracy. This result is primarily due 
to the use of corrective training and  inter-word  units. 

4.2 Areas for Further Research 

A detailed analysis of the  types of errors made  shows  that  function  words 
aEount for about @75% of the  words errors. Based  on  the results 
presented here, as well as those  given in the literature, it is clear that 
there are many areas that  must be studied in order  to  significantly 
improve word recognition accuracy. These acoustic  and lexical modeling 
issues include: 

1. Improved spectral and temporal feature representation 
2. Improved function  word  and  function phrase modeling 
3. Incorporation of inter-word PLU’s into  training and recognition 
4. Some form of corrective training to improve  word discrimination 
5. Acoustic  design of the lexicon to improve  word  and phrase 

modeling 

Each of these areas will be investigated. 

5. SUMMARY 

In this paper we  have discussed methods of acoustic modeling  of  basic 
speech sub-word units so  as to provide high  word  recognition accuracy. 
We showed  that  for a basic set of 47 context independent phone-hke 
units, word accuracies on the order of 8640% could be obtained on a 
loo0 word vocabulary, in a speaker independent mode,  for a grammar 
with a perplexity of 60, on independent test sets. When  we  increased the 
basic set of units to include context dependent  units,  we  were able to 
achieve word recognition accuracies of  from 91 to 93%  on  the same test 
sets. Based on outside results and  some of our own  preliminary 
evaluations, it seems clear that  we  can  increase  word  recognition 
accuracies by about 2-3% based on known modeling  techniques. The 
challenge for the  immediate future is  to learn how to increase word 
recognition accuracies to the 99% range, thereby  making  such systems 
useful for simple  database  management tasks.  
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