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Abstract 
In spite of the effort and progress made during the last few 
decades, the performance of automatic speech recognition 
(ASR) systems still lags far behind that achieved by humans. 
Some researchers think that more speech data will be 
sufficient in order to bridge this performance gap. Others think 
that radical modifications to the current methods need to be 
made, and possible inspirations for these modifications should 
come from human speech perception (HSP). This paper 
focuses on two issues: first, it presents a comparison between 
HSP and ASR emphasizing some insights from HSP that 
could still be applied in ASR; second, it presents some ideas 
for extracting useful non-linguistic information from the 
speech signal, the so called ‘rich transcription’, which could 
help in selecting specialized acoustic-linguistic models that 
offer higher accuracy than the general models.    

1. Introduction 
 
Substantial progress has been made in the area of automatic 
speech recognition (ASR), especially during the last two 
decades, by adopting and perfecting techniques based on 
hidden Markov models (HMM) and artificial neural networks 
(ANN). Once these techniques matured and started to level 
off in performance, more researchers began thinking of 
alternative recognition architectures and principles. A key 
reason for examining HSP more closely is that the difference 
in performance between ASR and human speech recognition 
(HSR) is larger in tasks that involve realistic ‘noise and 
background’ conditions than in artificially noise-free 
conditions. Lippmann provides an excellent summary 
comparing and contrasting the performance of modern ASR 
systems and HSR across a range of recognition tasks [1].  

The earliest attempts to perform ASR, although primitive, 
were based on early understanding of hearing and human 
speech perception (HSP). These early speech recognition 
systems assumed that short speech segments corresponding to 
phonemes, dyads, syllables or even words could be uniquely 
mapped into the corresponding linguistic units by measuring 
the “spectral distance” between these segments (or some 
appropriate spectral representation of these segments) and a 
set of previously recorded and labeled templates.  

The current ASR techniques (such as HMM and ANN) 
are data-driven. Such data-driven models infer or learn the 
relevant speech structures from large quantities of training 
data and use relatively simple speech models to map acoustics 
to (context-dependent) phones and words. These techniques 
and the resulting models are often cited for incorporating too 

little (linguistic and acoustic) knowledge about speech and 
about the processes of speech perception in humans. While a 
large number of researchers from the ASR community believe 
that new directions and discoveries are necessary to match 
human performance, more conservative researchers think that 
having significantly more training data will be sufficient to 
achieve this goal.  

There are a number of theoretical and practical problems 
in integrating more knowledge from HSP into ASR. First, 
there is no complete understanding of the mechanisms and 
processes that take place in human speech perception and 
speech comprehension; second, not every complete or partial 
discovery in speech perception leads to an improved 
computational model for ASR; third, the area of speech 
perception and understanding is multidisciplinary where 
discoveries and theories emerge from fields such as 
neuroscience, psychology, linguistics, cognitive science, etc., 
and these fields are usually not well monitored and 
understood by the engineers and computer scientists who 
implement ASR technologies. Finally, due to its complexity, 
understanding how the brain works poses formidable 
difficulties even for simpler, more specialized functions such 
as speech perception.  

Section 2 compares some general characteristics of HSP 
with techniques used in ASR and emphasizes some insights 
from HSP that have not been implemented in ASR. Section 3 
provides a description of some current research directions in 
our laboratory for extracting a rich transcription from speech. 

2. A comparison between HSP and ASR 
Most of the more biologically-inspired auditory models, 
proposed for use in ASR systems, account primarily for the 
processes that take place in the cochlea and at the lower levels 
in the auditory pathway. These include the Lyon Cochlear 
model [3], the Seneff joint synchrony/mean-rate model [4], 
and the Hermansky Perceptual Linear Predictive (PLP) model 
[5]. We now make a comparison between HSP and ASR 
along six key dimensions of ASR.  

2.1. Architecture and levels of organization 

The most important architectural difference between HSP and 
ASR is that the former involves a large parallel neural 
processing system whereas the latter, based on computers, 
uses a serial processing system. Functionally, the former uses 
millions of neurons whose information processing rates are 
relatively low (a neuron can fire at a rate of approximately 
less than one thousand times per second) whereas the latter 
usually employs one microprocessor whose processing rate is 



very high (a microprocessor can currently work at a rate of 
about one billion instructions per second).  

Another important distinction is represented by the higher 
number of levels of organization in HSP than in ASR. In 
humans the spectral-temporal information from 
approximately 3,500 inner hair cells (IHCs) and 12,000 outer 
hair cells (OHCs) along the basilar membrane is transmitted 
by approximately 30,000 afferent fibers (90-95% receiving 
from the IHCs [7]) in each of the auditory nerves to 
approximately 90,000 neurons in the cochlear nucleus.  
Additional processing occurs at higher levels using the 34,000 
neurons in the superior olivary complex and trapezoidal body, 
the 38,000 neurons in the lateral lemniscus, the 400,000 
neurons in the inferior colliculus, the 500,000 neurons in the 
medial geniculate body and the 100,000,000 neurons in the 
auditory cortex [2]. Another hierarchical organization in HSP 
is represented by the six layers found in the auditory cortex. 
Such complex interconnections and the increasing number of 
carriers of information found in the auditory pathway are  not 
usually implemented  in existing ASR systems.  

An important distinction between ASR and HSP comes 
from the existence in humans of various parallel arrangements 
in the thalamocortical auditory pathway, apparently 
specialized to transmit and process distinctive properties of 
the sensory information. At least three principal parallel 
pathways were found that correspond to a tonotopic system, a 
non-tonotopic system and a polysensory (multimodal) system. 
However, the exact contribution of these parallel systems to 
HSP is currently unknown. The specialization of populations 
of neurons was also found in the visual system where 
different groups of neurons process different attributes of 
images, such as form, color and motion [40].  In addition 
other groups of neurons appear to be specialized to represent 
more detailed characteristics of the acoustic signal. Neurons 
are specialized to have the highest sensitivity at a specific 
characteristic frequency (CF), or at a specific threshold (TH) 
of the sound pressure level, or to have a specific spontaneous 
activation rate (SA), firing range (FR), or dynamic range 
(DR). These types of specializations in processing the 
acoustic properties are not found in ASR, where the acoustic 
features are homogeneous, although they do represent the 
frequency scale in a non-linear manner. 

A different architectural distinction is represented by the 
redundancy offered by large groups of neurons in transmitting 
the same or similar information to the higher levels of 
processing. In the cochlea, each inner hair cell transmits the 
spectral information to 10 or more fibers in the auditory 
nerve. The same type of redundancy is found at all the upper 
levels of processing, although the distribution and 
combination of information could be much higher since a 
typical neuron has between 1,000 and 10,000 synapses. In the 
brain the sounds are processed by continuously increasing the 
number of neurons (many carrying redundant information), 
whereas in ASR the sounds are parsimoniously represented 
by a reduced number of features (from hundreds of speech 
signal samples to tens of spectral features). The principle of 
redundancy does not play any role in current ASR techniques.   

2.2. Spectral analysis and feature representation 

In humans the spectral analysis is performed along the 
basilar membrane of the cochlea by some 3,500 IHCs and 
12,000 OHCs. Although it is believed that only the IHCs 

transmit ‘important’ ascending information to the higher 
auditory levels, it appears that OHCs contribute significantly 
to the frequency selectivity and sensitivity of IHCs. The 
approximate 30,000 neural fibres in each auditory nerve 
represent the acoustic signals by a myriad of firing rate 
patterns derived from all these neurons. Each of these neurons 
responds only to a specific frequency range and has specific 
characteristics (CF, SA rate, TH, DR and FR). Hence, there is 
a high specialization among these neurons in order to 
represent the entire frequency and dynamic range of human 
audition. In ASR the spectral analysis of the acoustic signal is 
performed usually at a few hundred frequency points (e.g., 
512 Fourier magnitudes) which are then reduced to 10-20 
spectral dimensions. Although both representations are time-
dependent (time varying), in HSP the acoustic features are 
represented by firing rate (frequency) patterns and in ASR 
they are represented by magnitude patterns.   

2.3. Top-down information processing  

In hearing there is a large number of top-down connections 
represented by the efferent fibers at all the levels of the 
auditory system. Although their functions are far from well 
understood, it is believed that they play an important role in 
audition, including HSP. Various studies based on animals 
showed that the recognition of vowels in identification 
experiments was seriously degraded when efferent fibers in 
the auditory nerves were cut. In ASR such top-down 
connections are only implemented at high levels by emulating 
semantic and syntactic constraints with linguistic rules and 
word probabilities (n-grams). The efferent connections in the 
auditory pathway do not usually have any direct equivalent at 
the lower levels of information processing in ASR (e.g., 
features are not affected by top-down information). This 
could be a reason for the lack of robustness in ASR. 

Another dissimilarity between HSP and ASR is the 
existence of another major level of the architecture and 
process in HSP, represented by the multimodal concept code 
level, in addition to the word code level and the syntactic-
semantic level. The syntactic-semantic level influences word 
recognition in both systems but the multimodal concept code 
level is either not existent in ASR or is represented in a one-
to-one manner by the word code level. This is not a minor 
distinction since in HSP the concept-word interaction is bi-
directional and the concept code level is grounded in multiple 
modalities (e.g., sensory, motor, somatic). In ASR the 
recognized word is only influenced by the bottom-up 
(acoustic) and the top-down linguistic constraints (syntactic 
and semantic) that are also present in HSP. Individual word-
concept interactions are simulated in ASR only at a linguistic 
level by using word probabilities (e.g., bi-grams, tri-grams, 
etc.) but this is a rather simplistic process and does not come 
from the multimodal environment context but from previous 
utterances (words).   

2.4. Speech units 

All the important speaker-independent ASR approaches use 
the concatenation principle to represent words by successive 
phonemes. The fundamental unit of processing is thus the 
phoneme, which is usually represented by a context-
dependent model (e.g., triphone, demiphone). Words are 
represented in the pronunciation lexicon as concatenations of 
phonemes, similarly as they are represented in writing by a 



concatenation of letters. However, in HSP it is unlikely that 
the phoneme and the concatenation principle play the only 
central roles as in ASR. A variety of experimental and 
theoretical studies provide more and more evidence that in 
HSP some holistic processes employing words, syllables, and 
transitional units (diphones) are likely to also be involved. 
There are very few approaches in ASR based on 
heterogeneous speech units.   

2.5. Speech segmentation 

Current ASR techniques, such as the HMM, perform the 
search for the best sentence by combining the acoustic and 
linguistic information and searching a lattice of words and 
phones for the best hypothesis. The recognizer exploits 
pauses or silence intervals in the incoming speech for 
segmenting the utterance into sentences (or phrases). Because 
these sentences usually obey grammatical rules, these rules 
can be imposed by top-down syntactic-semantic constraints, 
and thus the recognizer performs better when the recognition 
and final segmentation are performed on the whole sentence. 
The segmentation into words precedes the recognition and 
there is usually no local effect of the recognition of the 
current word on the segmentation of the next word.  

In HSP it appears that the perception of the ‘current’ word 
plays an important role on the identification of the onset of 
the following word (segmentation), whose onset identification 
in turn, plays a very important role on the recognition of that 
word. This might be also influenced by the fact that in HSP 
the meaning of an individual word usually is perceived at run-
time (‘instantly’) and not after the completion of the whole 
sentence, although there are situations when that happens 
(sometime the recognition of the meaning of a current word 
depends upon a word or phrase that only comes after a few 
more words). It should be understood that the ‘current’ word 
is processed with a certain delay and that this delay may not 
be always constant and may depend upon the identity of the 
word and the context in the sentence. In reality, some words 
(in particular long words) appear to be recognized before they 
end.  Such a local effect imposed by the recognition of the 
current word upon the segmentation of the following word is 
not directly implemented in ASR where multiple 
segmentation hypotheses are derived by imposing semantic 
and syntactic constraints and precede the final recognition of 
the whole sentence. However, in principle, such an approach 
could be implemented in ASR by providing onset markers 
after recognition of high-confidence words and associating 
additional probabilities with these segmentation markers 
based on the confidence measure of the preceding word. 

2.6.  Speech variability 

One of the most difficult problems in ASR is dealing with the 
great variability found in natural speech and with the effects 
of various noisy environments. Humans perform much better 
than ASR in perceiving speech from many speakers and 
different environments without a prior exposure to the exact 
type of speech and environmental noise. That leads us to 
suspect a deficiency in ASR in coping with the large 
variability in speech and environmental factors.  

Speech rate variability has a wide range. While a normal 
speech rate comprises about 10 phonemes per second, speech 
can be produced and perceived at much lower and higher 
rates. For example, the comedienne Fran Capo, who is listed 

in The Guinness Book of World Records as the fastest talking 
female, has achieved an incredible speaking rate of 603.32 
words per minute, which is about 10 words per second. It is 
likely that the brain deals with the high degrees of spectral 
and temporal variability of speech by employing specialized 
neural mechanisms.  

In HMM, temporal variability is modeled by transitional 
probabilities (or by explicit state or phone duration models) 
among stationary (or non-stationary) phone states, and 
spectral variability is usually accounted for by employing a 
mixture of a large number of Gaussian densities to represent 
the composite probability density of the acoustic features of 
the phones in each state. In humans, as the information 
proceeds from the cochlea to higher hierarchical levels in the 
auditory pathway, an increase in the dimensionality and the 
heterogeneity of this space takes place (30,000 in the auditory 
nerve and 500,000 in the medial geniculate body before 
entering the auditory cortex). Heterogeneous spaces of 
representation (increased by parallel neural channels 
specialized for ranges of variability) could explain in part the 
high performance of HSP in adverse conditions (e.g., new 
speakers and environments). Hence, in general, in HSP the 
variability of speech is more likely accounted for by many 
parallel sets of neurons that map into the same higher level 
representation of a speech segment (phoneme or phonological 
sequence), each specialized to cover a specific region of 
variability. The distinction is that these speech segments 
might be represented by heterogeneous multi-dimensional 
spaces, i.e., using different heterogeneous spaces specialized 
for particular speech segments and particular ranges of 
variability.    

3. Rich transcription 
Certainly humans extract a wealth of non-linguistic 
information from speech that plays an important role in 
speech perception and understanding. In fact this useful 
information in speech understanding is also complemented 
by the use of other input modalities (vision, touch, smell, 
etc.). In ASR the usual task is word transcription, which is 
somehow artificial because it is isolated from a variety of 
other cognitive processes that normally take place in the 
human brain. Extracting non-linguistic information from the 
speech signal can be viewed as a method of preprocessing. 
Some of the attributes of the resulting rich transcription, 
include speaker’s characteristics (e.g., gender, height, weight, 
vocal tract length, accent, emotion, etc.), speech non-speech 
distinctions, segregation of multiple/overlapped speech 
streams, sense of distance to the speaker, and awareness of 
the use of an unknown foreign language. 

Current experiments are underway in our laboratory for 
estimating some of these non-linguistic features. A method 
for speech/non-speech detection based on recognizing 
transitional (diphone) units in audio streams is being studied. 
A new method of detecting overlapped speech by building 
Gaussian mixture models is also under investigation. We are 
looking at methods for speaker segmentation of multi-speaker 
streams, and finally we are studying a new method for 
estimating speaker’s height, vocal tract length, weight, and 
gender. Some of these results regarding the estimation of 
speaker’s height and vocal tract length from speech are 
presented separately in another paper [8]. 



4. Discussion 
Significant progress has been made in understanding brain 
and language processes during the last two decades [9].  The 
current paper points to some potential sources of new ideas, 
based on this research progress, for improving ASR 
performance.   

There is increasing evidence that transitional units play a 
very important role in HSP, maybe even more important than 
that of phonemes. It might also be possible that words are 
perceived, both holistically and microscopically (possibly 
involving various phonological units or features), and the 
information emerging from various levels is integrated 
leading to a decision among competing candidates. It is 
known that humans can accurately perceive isolated words 
and syllables (or even some phonemes) that can be produced 
in isolation. That simply means that humans have the ability 
to perceive various speech ‘codes’ even without a larger 
context or without meaning. This does not mean that the 
brain uses exactly the same processes and channels in all 
these tasks or that the accuracy of identification is the same 
in all these cases. However, the alternative suggested here for 
speech perception is different from that suggested in [6], 
which supports the idea that there is no fundamental unit in 
speech perception and the perceived unit is the one that 
attention is focused on in a specific task. The idea suggested 
in this paper agrees that in the perception of words the 
objects of attention are the words, whereas in the recognition 
of nonsense syllables or phones the objects of attention are 
these units. But, in addition, this paper suggests that the 
perception of words involves a few parallel processes that all 
concur in the perception of the word. That is, there are 
simultaneously involved processes: a holistic process of word 
perception and a few other sub-word processes such as for 
the recognition of syllables, diphones, and certain phones.  

At the phoneme level the information specifying the 
phoneme category is distributed across a continuous time 
interval that extents beyond the currently considered 
phoneme boundaries in ASR. An analysis of this multi-level 
information based on seven distinctive acoustic cues in the 
identification of vowels is presented in [10]. 

The most important argument supporting the multi-level 
model of word perception is that all of these units are 
repeatedly heard during the process of language acquisition, 
and this must inevitably lead to the creation of architectural 
patterns of synaptic connectivity in the auditory pathway and 
the auditory cortex at various hierarchical levels and not only 
to a single pattern ending with the word ‘code’. It is known 
that such synaptic connections and the early beginnings of 
recognition of words occur during the first year of infancy 
whereas the acquisition of the meaning of the words only 
begins during the second year of the child’s life. Since the 
absence of the meaning of words does not preclude the 
building of such word codes from continuous speech, it is 
unlikely that the brain does not build similar codes for 
syllables, diphones or even phonemes due to a lack of 
meaning when they are heard repeatedly during language 
acquisition.  

Perceptual studies on the spectral transitions between 
phonemes show evidence that these regions play a very 
important role in speech perception [11]. If these transitions 
are so important then why should not the brain have 
individual recognition ‘codes’ for them, since they are not 

characteristics of individual phonemes (they do not belong to 
phonemes) and they only characterize specific combinations 
between phonemes. Since humans usually retain a lexicon 
comprising a few tens of thousand of words, what would be 
the memory economy of not employing a few more thousand 
codes for these important phonological segments?  

The multi-level model of word perception is well 
supported by principles of redundancies, which are 
considered to play an important role in HSP and perception in 
general. It is also supported by the availability of an immense 
number of neurons in the auditory sensory system. It is 
supported by the evidence that the brain has segregated 
(specialized) areas for the processing of various 
characteristics of the sensory information (e.g., in vision - 
form, color and movement). The model proposed here is 
merely a sum of ideas instead of a theory. Preliminary 
experiments implementing these ideas are newly underway.  

5. Conclusions 
It appears that existing ASR technologies need radical 
modifications in order to bridge the performance gap between 
HSR and ASR. For potential new directions in ASR, a good 
place to start is HSP, although it might be possible that some 
new mathematical approaches would provide better solutions 
than currently achieved by ASR. It is argued here that to 
bridge the performance gap new ASR systems also need to 
extract more non-linguistic information form the speech 
signal.   
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