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Abstract 
 
Statistical methods for speech processing refer to a general methodology in which knowledge 

about both a speech signal and the language that it expresses, along with practical uses of that 

knowledge for specific tasks or services, is developed from actual realizations of speech data 

through a well-defined mathematical and statistical formalism. For more than 20 years, this basic 

methodology has produced many advances and new results, particularly for recognizing and 

understanding speech and natural language by machine. In this article, we focus on several 

important statistical methods, e.g., one based primarily on the hidden Markov model (HMM) 

formulation that has gained widespread acceptance as the dominant technique and one related to 

use of statistics for characterizing word co-occurrences. In order to recognize and understand 

speech, the speech signal is first processed by an acoustic processor, which converts the 

waveform to a set of spectral feature vectors which characterize the time-varying properties of the 

speech sounds, and then by a linguistic decoder, which decodes the feature vectors into a word 

sequence which is valid according to the word lexicon and task grammar associated with the 

speech recognition or understanding task. The hidden Markov model approach is mainly used for 

acoustic modeling, that is assigning probabilities to acoustic realizations of a sequence of sounds 

or words, and a statistical language model is used to assign probabilities to sequences of words in 

the language. A Bayesian approach is used to find the word sequence with the maximum a 

posteriori probability over all possible sentences in the task language. This search problem is 

often astronomically large for large vocabulary speech understanding problems, and thus the 

speech-to-text decoding process often requires inordinate amounts of computing power to solve 

by heuristic methods. Fortunately, using results from the field of Finite State Automata Theory, 

we can reduce the computational burden of the search by orders of magnitude, thereby enabling 

exact solutions in computationally feasible times for large speech recognition problems. 

 

                                                 
1 This article is based on a series of lectures on Challenges in Speech Recognition by one of the authors (LRR) and his 
many colleagues at AT&T Labs Research, most especially Dr. Mazin Rahim who contributed to the presentation and 
figures used throughout this article. We thank Dr. Rahim for his help and support. 
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1.    Introduction 

The goal of getting a machine to understand fluently spoken speech and respond in a natural 

voice has been driving speech research for more than 50 years. Although the personification of an 

intelligent machine such as Hal in the movie 2001, A Space Odyssey, or R2D2 in the Star Wars 

series, has been around for more than 35 years, we are still not yet at the point where machines 

reliably understand fluent speech, spoken by anyone, and in any acoustic environment.  In spite of 

the remaining technical problems that need to be solved, the fields of automatic speech 

recognition and understanding have made tremendous advances and the technology is now 

readily available and used on a day-to-day basis in a number of applications and services—

especially those conducted over the public-switched telephone network (PSTN) [1]. This article 

aims at reviewing the technology that has made these applications possible. 

Speech recognition and language understanding are two major research thrusts that have 

traditionally been approached as problems in linguistics and acoustic-phonetics, where a range of 

acoustic-phonetic knowledge has been brought to bear on the problem with remarkably little 

success. In this article, however, we focus on statistical methods for speech and language 

processing, where the knowledge about a speech signal and the language that it expresses, 

together with practical uses of the knowledge, is developed from actual realizations of speech 

data through a well-defined mathematical and statistical formalism. We review how the statistical 

methods are used for speech recognition and language understanding, show current performance 

on a number of task specific applications and services, and discuss the challenges that remain to 

be solved before the technology becomes ubiquitous. 

2. The Speech Advantage 

There are fundamentally three major reasons why so much research and effort has gone into 

the problem of trying to teach machines to recognize and understand fluent speech, and these are 

the following: 

• Cost reduction – Among the earliest goals for speech recognition systems was to replace 

humans, who were performing some simple tasks, with automated machines, thereby 

reducing labor expenses while still providing customers with a natural and convenient 

way to access information and services. One simple example of a cost reduction system 

was the Voice Recognition Call Processing (VRCP) system introduced by AT&T in 1992 

[2] which essentially automated so-called “Operator Assisted” calls, such as Person-to-

Person calls, Reverse billing calls, Third Party Billing calls, Collect Calls (by far the most 
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common class of such calls), and Operator-Assisted Calls. The resulting automation 

eliminated about 6600 jobs, while providing a quality-of-service that matched or 

exceeded that provided by the live attendants, saving AT&T on the order of $300M per 

year. 

• New revenue opportunities – speech recognition and understanding systems enabled 

service providers to have a 24x7 high quality customer care automation capability, 

without the need for access to information by keyboard or touch tone button pushes. An 

example of such a service was the How May I Help You (HMIHY) service introduced by 

AT&T late in 1999 [3] which automated the customer care for AT&T Consumer 

Services. This system will be discussed further in the section on speech understanding. A 

second example of such a service was the NTT Anser service for voice banking in Japan 

[4], which enabled Japanese banking customers to access bank account records from an 

ordinary telephone without having to go to the bank. (Of course, today we utilize the 

Internet for such information, but in 1988, when this system was introduced, the only 

way to access such records was a physical trip to the bank and a wait in lines to speak to a 

banking clerk.) 

• Customer retention – speech recognition provides the potential for personalized services 

based on customer preferences, and thereby to improve the customer experience. A trivial 

example of such a service is the voice-controlled automotive environment which 

recognizes the identity of the driver from voice commands and adjusts the automobile’s 

features (seat position, radio station, mirror positions, etc.) to suit the customer preference 

(which is established in an enrollment session). 

3. The Speech Dialog Circle 

When we consider the problem of communicating with a machine, we must consider the 

cycle of events that occurs between a spoken utterance (as part of a dialog between a person and a 

machine) and the response to that utterance from the machine. Figure 1 shows such a sequence of 

events, which is often referred to as “The Speech Dialog Circle”, using an example in the 

telecommunication context. 



9/20/2004 10:43 AM 4 Statistical Methods for Recognition 

 
Figure 1—The Conventional Speech Dialog Circle 

 
The customer initially makes a request by speaking an utterance which is sent to a machine 

which attempts to recognize, on a word-by-word basis, the spoken speech. The process of 

recognizing the words in the speech is called Automatic Speech Recognition (ASR) and its output 

is an orthographic representation of the recognized spoken input. The ASR process will be 

discussed in the next section. Next the spoken words are analyzed by a Spoken Language 

Understanding (SLU) module which attempts to attribute meaning to the spoken words. The 

meaning that is attributed is in the context of the task being handled by the speech dialog system. 

(What is described here is traditionally referred to as a limited domain understanding system or 

application,) Once meaning has been determined, the Dialog Management (DM) module 

examines the state of the dialog according to a prescribed operational workflow and determines 

the course of action that would be most appropriate to take. The action may be as simple as a 

request for further information or confirmation of an action that is taken. Thus if there were 

confusion as to how best to proceed, a text query would be generated by the Spoken Language 

Generation module to hopefully clarify the meaning and help determine what to do next. The 

query text is then sent to the final module, the Text-to-Speech Synthesis (TTS) module, and then 
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converted into intelligible and highly natural speech which is sent to the customer who decides 

what to say next based on what action was taken, or based on previous dialogs with the machine. 

All of the modules in the Speech Dialog Circle can be “data-driven” in both the learning and 

active use phases, as indicated by the central Data block in Figure 1. 

A typical task scenario, e.g., booking an airline reservation, requires navigating the Speech 

Dialog Circle many times – each time being referred to as one “turn” - to complete a transaction. 

(The average number of turns a machine takes to complete a prescribed task is a measure of the 

effectiveness of the machine in many applications.) Hopefully, each time through the dialog 

circle enables the customer to get closer to the desired action either via proper understanding of 

the spoken request or via a series of clarification steps. The speech dialog circle is a powerful 

concept in modern speech recognition and understanding systems, and is at the heart of most 

speech understanding systems that are in use today. 

4. Basic ASR Formulation 
 

The goal of an ASR system is to accurately and efficiently convert a speech signal into a text 

message transcription of the spoken words, independent of the device used to record the speech 

(i.e., the transducer or microphone), the speaker, or the environment. A simple model of the 

speech generation process, as used to convey a speaker’s intention is shown in Figure 2. 

 
 
 
 
 
 
 
 
 

 
Figure 2 – Model of Spoken Speech 

 
It is assumed that the speaker decides what to say and then embeds the concept in a sentence, W , 

which is a sequence of words (possibly with pauses and other acoustic events such as uh’s, um’s, 

er’s, etc.) The speech production mechanisms then produce a speech waveform, ( )s n , which 

embodies the words of W as well as the extraneous sounds and pauses in the spoken input. A 

conventional automatic speech recognizer attempts to decode the speech, ( )s n , into the best 

estimate of the sentence, Ŵ , using a two-step process, as shown in Figure 3. 
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Figure 3 – ASR Decoder from speech to sentence 

 
The first step in the process is to convert the speech signal, ( )s n , into a sequence of spectral 

feature vectors, X , where the feature vectors are measured every 10 ms (or so) throughout the 

duration of the speech signal. The second step in the process is to use a syntactic decoder to 

generate every possible valid sentence (as a sequence of orthographic representations) in the task 

language, and to evaluate the score (i.e., the a posteriori  probability of the word string given the 

realized acoustic signal as measured by the feature vector) for each such string, choosing as the 

recognized string, Ŵ , the one with the highest score. This is the so-called maximum a posteriori 

probability (MAP) decision principle, originally suggested by Bayes. Additional linguistic 

processing can be done to try to determine side information about the speaker, such as the 

speaker’s intention, as indicated in Figure 3. 

Mathematically, we seek to find the string Ŵ that maximizes the a posteriori probability of 
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the Acoustic Model, ( | )AP X W , and the latter the Language Model, ( )LP W  [5-6]. We note that 

these quantities are not given directly, but instead are usually estimated or inferred from a set of 

training data that have been labeled by a knowledge source, i.e., a human expert. The decoding 

equation is then rewritten as: 

ˆ arg max ( | ) ( )A LW
W P X W P W=  

 
We explicitly write the sequence of feature vectors (the acoustic observations) as: 
 

NX xxx ,,, 21 L=  
 
where the speech signal duration is N frames (or N times 10 msec. when the frame shift is 10 

msec). Similarly we explicitly write the optimally decoded word sequence as: 

MwwwW L21
ˆ =  

 
where there are M words in the decoded string. The above decoding equation defines the 

fundamental statistical approach to the problem of automatic speech recognition. 

It can be seen that there are three steps to the basic ASR formulation, namely: 

Step 1 – acoustic modeling for assigning probabilities to acoustic (spectral) realizations of a 

sequence of words. For this step we use a statistical model (called the hidden 

Markov model or HMM) of the acoustic signals of either individual words or sub-

word units (e.g., phonemes) to compute the quantity ( | )AP X W . We train the 

acoustic models from a training set of speech utterances, which have been 

appropriately labeled to establish the statistical relationship between X and W. 

Step 2 – language modeling for assigning probabilities, ( )LP W , to sequences of words that 

form valid sentences in the language and are consistent with the recognition task 

being performed. We train such language models from generic text sequences, or 

from transcriptions of task specific dialogues. 

Step 3 – hypothesis search whereby we find the word sequence with the maximum a 

posterior probability by searching through all possible word sequences in the 

language. 

a) Notes on Step 1 – the Acoustic Model [7-8] 
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We train a set of acoustic models for the words or sounds of the language by learning the 

statistics of the acoustic features, X, for each word or sound, from a speech training set, 

where we compute the variability of the acoustic features during the production of the 

words or sounds, as represented by the models. For large vocabulary tasks, it is 

impractical to create a separate acoustic model for every possible word in the language 

since it requires far too much training data to measure the variability in every possible 

context. Instead we train a set of about 50 acoustic-phonetic sub-word models for the ~50 

phonemes in the English language, and construct a model for a word by concatenating 

(stringing together sequentially) the models for the constituent sub-word sounds in the 

word, as defined in a word lexicon or dictionary, where multiple pronunciations are 

allowed). Similarly we build sentences (sequences of words) by concatenating word 

models. Since the actual pronunciation of a phoneme may be influenced by neighboring 

phonemes (those occurring before and after the phoneme), the set of so-called “context-

dependent” phoneme models are often used as the speech models, as long as sufficient 

data are collected for proper training of these models. 

b) Notes on Step 2 – the Language Model [9-10] 

The language model describes the probability of a sequence of words that form a valid 

sentence in the task language. A simple statistical method works well, based on a 

Markovian assumption, namely that the probability of a word in a sentence is conditioned 

on only the previous N-1 words, namely an N-gram language model, of the form: 

∏
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where ),,,|( 121 +−−− NmmmmL wwwwP L  is estimated by simply counting up the relative 

frequencies of N-tuples in a large corpus of text. 

c) Notes on Step 3 – the Search Problem [11-12] 

The search problem is one of searching the space of all valid sound sequences, 

conditioned on the word grammar, the language syntax, and the task constraints, to find 

the word sequence with the maximum likelihood. The size of the search space can be 

astronomically large and take inordinate amounts of computing power to solve by 

heuristic methods. The use of methods from the field of Finite State Automata Theory 

provide Finite State Networks (FSNs) [13], along with the associated search policy based 



9/20/2004 10:43 AM 9 Statistical Methods for Recognition 

on dynamic programming, that reduce the computational burden by orders of magnitude, 

thereby enabling exact solutions in computationally feasible times, for large speech 

recognition problems. 

5. Development of a Speech Recognition System for a Task or an Application 
 

Before going into more details on the various aspects of the process of Automatic Speech 

Recognition by machine, we review the 3 steps that must occur in order to define, train, and build 

an ASR system [14-15]. These steps are the following: 

Step 1  Choose the recognition task – specify the word vocabulary for the task, the set of units 

that will be modeled by the acoustic models (e.g., whole words, phonemes, etc.), the 

word pronunciation lexicon (or dictionary) that describes the variations in word 

pronunciation, the task syntax (grammar), and the task semantics. By way of example, 

for a simple speech recognition system capable of recognizing a spoken credit card 

number using isolated digits (i.e., single digits spoken one at a time), the sounds to be 

recognized are either whole words or the set of sub-word units that appear in the digits 

/zero/ to /nine/ plus the word /oh/. The word vocabulary is the set of 11 digits. The task 

syntax allows any single digit to be spoken, and the task semantics specify that a 

sequence of isolated digits must form a valid credit card code for identifying the user. 

Step 2 Train the models – create a method for building acoustic word models (or sub-word 

models) from a labeled speech training data set of multiple occurrences of each of the 

vocabulary words by one or more speakers. We also must use a text training data set to 

create a word lexicon (dictionary) describing the ways that each word can be 

pronounced (assuming we are using sub-word units to characterize individual words), a 

word grammar (or language model) that describes how words are concatenated to form 

valid sentences (i.e., credit card numbers), and finally a task grammar that describes 

which valid word strings are meaningful in the task application (e.g., valid credit card 

numbers). 

Step 3  Evaluate recognizer performance – we need to determine the word error rate and the 

task error rate for the recognizer on the desired task. For an isolated digit recognition 

task, the word error rate is just the isolated digit error rate, whereas the task error rate 

would be the number of credit card errors that lead to mis-identification of the user. 

Evaluation of the recognizer performance often includes an analysis of the types of 

recognition errors made by the system. This analysis can lead to revision of the task in 
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a number of ways, ranging from changing the vocabulary words or the grammar (i.e., to 

eliminate highly confusable words) to the use of word-spotting, as opposed to word 

transcription. As an example, in limited vocabulary applications, if the recognizer 

encounters frequent confusions between words like “freight” and “flight,” it may be 

advisable to change “freight” to “cargo” to maximize its distinction from “flight.” 

Revision of the task grammar often becomes necessary if the recognizer experiences 

substantial amounts of what is called “out of grammar” (OOG) utterances, namely the 

use of words and phrases that are not directly included in the task vocabulary [16]. 

6. The Speech Recognition Process 
 

In this section, we provide some technical aspects of a typical speech recognition system. 

Figure 4 shows a block diagram of a speech recognizer that follows the Bayesian framework 

discussed above. 

 
 

Figure 4 – Framework of ASR System 
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The goal of feature analysis is to extract a set of salient features that characterize the spectral 

properties of the various speech sounds (the sub-word units) and that can be efficiently measured. 

The “standard” feature set for speech recognition is a set of Mel-Frequency Cepstral Coefficients 

(MFCCs) (which perceptually match some of the characteristics of the spectral analysis done in 

the human auditory system) [17], along with the first and second order derivatives of these 

features. Typically about 13 MFCC coefficients and their first and second derivatives [18] are 

calculated every 10 ms, leading to a spectral vector with 39 coefficients every 10 ms. A block 

diagram of a typical feature analysis process is shown in Figure 5. 

 
Figure 5 – Block Diagram of Feature Analysis Computation 

 
The speech signal is sampled and quantized, pre-emphasized by a first order digital filter with 

pre-emphasis factor α , segmented into frames, windowed, and then a spectral analysis is 

performed (using a Fast Fourier Transform (FFT) [19] or Linear Predictive Coding (LPC) method 

[20-21]). The frequency conversion from a linear frequency scale to a mel frequency scale is 

performed in the filtering block, followed by cepstral analysis yielding the MFCC coefficients 

[17], equalization to remove any bias and to normalize the cepstral coefficients [22], and finally 

the computation of first and second order (via temporal derivative) MFCC coefficients is made, 

completing the feature extraction process. 
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b. Acoustic Models 

The goal of acoustic modeling is to characterize the statistical variability of the feature set 

determined above for each of the basic sounds (or words) of the language. Acoustic modeling 

uses probability measures to characterize sound realization using statistical models. A statistical 

method, known as the hidden Markov model (HMM) [23-26], is used to model the spectral 

variability of each of the basic sounds of the language using a mixture density Gaussian 

distribution [27-28] which is optimally aligned with a speech training set and iteratively updated 

and improved (the means, variances, and mixture gains are iteratively updated) until an optimal 

alignment and match is achieved. 

 
Figure 6 shows a simple 3-state HMM for modeling the subword unit /s/ as spoken at the 

beginning of the word /six/. Each HMM state is characterized by a probability density function 

(usually a mixture Gaussian density) that characterizes the statistical behavior of the feature 

vectors at the beginning (state s1), middle (state s2) and end (state s3) of the sound /s/. In order to 

train the HMM for each subword unit, we use a labeled training set of words and sentences and 

utilize an efficient training procedure known as the Baum-Welch algorithm [25, 29-30] to align 

each of the various subword units with the spoken inputs, and then estimate the appropriate 

means, covariances, and mixture gains for the distributions in each subword unit state. The 

algorithm is a hill-climbing algorithm and is iterated until a stable alignment of subword unit 

models and speech is obtained, enabling the creation of stable models for each subword unit. 

Figure 7 shows how a simple two sound word, “is”, which consists of the sounds /IH/ and /Z/, 

is created by concatenating the models [31] for the /IH/ sound with the model for the /Z/ sound, 

thereby creating a 6-state model for the word “is”. 
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 Figure 8 shows how an HMM can be used to characterize a whole word model [32]. In 

this case the word is modeled as a sequence of 5 HMM states, where each state is characterized 

by a mixture density, denoted as  )( tjb x where the model state is the index j, the feature vector at 

time t is denoted as tx , and the mixture density is of the form: 
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Included in Figure 8 are an explicit set of state transitions, ija , which specify the probability 

of making a transition from state i to state j at each frame, thereby defining the time sequence of 

the feature vectors over the duration of the word. Usually the self-transitions, iia , are large (close 

to 1.0), and the skip-state transitions, 13 24 35, ,a a a , are small (close to 0). 

Once the set of state transitions and state probability densities are specified, we say that a 

model λ (which is also used to denote the set of parameters that define the probability measure) 

has been created for the word or subword unit. In order to optimally train the various models (for 

each word unit [32] or subword unit [31]), we need to have algorithms that perform the following 

three steps or tasks [26] using the acoustic observation sequence, X, and the model λ : 

a. Likelihood Evaluation: compute )|( λXP  

b. Decoding: choose the optimal state sequence for a given speech utterance 

c. Re-estimation: adjust the parameters of λ  to maximize )|( λXP  

 

 
Figure 9 – The Baum-Welch Training Procedure 
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Welch procedure are beyond the scope of this article. The heart of the training procedure for re-

estimating model parameters using the Baum-Welch procedure is shown in Figure 9. 

c. Word Lexicon 

The purpose of the word lexicon or dictionary is to define the range of pronunciation of 

words in the task vocabulary [33-34]. The reason that such a word lexicon is necessary is because 

the same orthography can be pronounced differently by people with different accents, or because 

the word has multiple meanings that change the pronunciation by the context of its use. For 

example the word “data” can be pronounced as: /d/ /ae/ /t/ /ax/ or as /d/ /ey/ /t/ /ax/, and we would 

need both pronunciations in the dictionary to properly train the recognizer models and to properly 

recognize the word when spoken by different individuals. Another example of variability in 

pronunciation from orthography is the word “record” which can be either a disk that goes on a 

player, or the process of creating sound. The different meanings have significantly different 

pronunciations.  

d. Language Model 

The purpose of the language model [10, 35], or grammar, is to provide a task syntax that 

defines acceptable spoken input sentences and enables the computation of the probability of the 

word string, W, given the language model, i.e., ( )LP W . There are several methods of creating 

word grammars, including the use of rule-based systems (i.e., deterministic grammars that are 

knowledge driven), and statistical methods which compute an estimate of word probabilities from 

large training sets of textual material. We describe the way in which a statistical N-gram word 

grammar is constructed from a large training set of text. 

Assume we have a large text training set of labeled words. Thus for every sentence in the 

training set, we have a text file that identifies the words in that sentence. If we consider the class 

of N-gram word grammars, then we can estimate the word probabilities from the labeled text 

training set using counting methods. Thus to estimate word trigram probabilities (that is the 

probability that a word iw  was preceded by the pair of words 1 2( , )i iw w− − ), we compute this 

quantity as: 
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where 2 1( , , )i i iC w w w− −  is the frequency count of the word triplet (i.e., trigram) consisting of 

2 1( , , )i i iw w w− −  occurred in the training set, and 2 1( , )i iC w w− − is the frequency count of the word 

duplet (i.e., bigram) 2 1( , )i iw w− −  occurred in the training set. 

Although the method of training N-gram word grammars, as described above, generally 

works quite well, it suffers from the problem that the counts of N-grams are often highly in error 

due to problems of data sparseness in the training set. Hence for a text training set of millions of 

words, and a word vocabulary of several thousand words, more than 50% of word trigrams are 

likely to occur either once or not at all in the training set. This leads to gross distortions in the 

computation of the probability of a word string, as required by the basic Bayesian recognition 

algorithm. In the cases when a word trigram does not occur at all in the training set, it is 

unacceptable to define the trigram probability as 0 (as would be required by the direct definition 

above), since this leads to effectively invalidating all strings with that particular trigram from 

occurring in recognition. Instead, in the case of estimating trigram word probabilities (or similarly 

extended to N-grams where N is more than three), a smoothing algorithm [36] is applied by 

interpolating trigram, bigram and unigram relative frequencies, i.e., 

2 1 1
1 2 3 2 1

2 1 1

3 2 1

( , , ) ( , ) ( )ˆ( | , )
( , ) ( ) ( )

1

( ) size of text training corpus

i i i i i i
i i i

i i i i
i

i
i

C w w w C w w C wP w w w p p p
C w w C w C w

p p p

C w

− − −
− −

− − −

= + +

+ + =

=

∑

∑
 

where the smoothing probabilities, 3 2 1, ,p p p  are obtained by applying the principle of cross-

validation. Other schemes such as the Turing-Good estimator that deals with unseen classes of 

observations in distribution estimation have also been proposed [37]. 

Worth mentioning here are two important notions that are associated with language models: 

perplexity of the language model and the rate of occurrences of out-of-vocabulary words in real 

data sets. We elaborate them below:  

    Language Perplexity 
 

A measure of the complexity of the language model is the mathematical quantity known as 

language perplexity (which is actually the geometric mean of the word branching factor, or the 

average number of words that follow any given word of the language) [38]. We can compute 
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language perplexity, as embodied in the language model, )(WPL , where 

1 2( , ,..., )QW w w w= is a length-Q word sequence, by first defining the entropy [39] as: 

2
1( ) log ( )H W P W
Q

= − . 

Using a trigram language model we can write the entropy as: 

2 1 2
1

1( ) log ( | , )
Q

i i i
i

H W P w w w
Q − −

=

= − ∑  

where we suitably define the first couple of probabilities as the unigram and bigram 

probabilities. Note that as Q approaches infinity, the above entropy approaches the 

asymptotic entropy of the source defined by the measure )(WPL . The perplexity of the 

language is then defined as: 

( ) 1/
1 2( ) 2 ( , ,..., )H W Q

QPP W P w w w −= =   . as ∞→Q  

Some examples of language perplexity for specific speech recognition tasks are the 

following: 

i. for an 11 digit vocabulary (“zero” to “nine” plus “oh”) where every digit can 

occur independently of every other digit, the language perplexity (average word 

branching factor) is 11; 

ii. for a 2000 word Airline Travel Information System (ATIS) [40], the language 

perplexity (using a trigram language model) is 20 [41]; 

iii. for a 5000 word Wall Street Journal Task (reading articles aloud) the language 

perplexity (using a bigram language model) is 130 [42]. 

A plot of the bigram perplexity for a training set of 500 million words, tested on the Encarta 

Encyclopedia is shown in Figure 10. It can be seen that language perplexity grows only 

slowly with the vocabulary size and is only about 400 for a 60,000 word vocabulary. 

Out-of-Vocabulary Rate 

Another interesting aspect of language models is their coverage of the language as 

exemplified by the concept of an Out-of-Vocabulary (OOV) [43] rate which measures how 

often a new word appears for a specific task, given that a language model of a given 

vocabulary size for the task has been created. Figure 11 shows the OOV rate for sentences 
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from the Encarta Encyclopedia, again trained on 500 million words of text, as a function of 

the vocabulary size. It can be seen that even for a 60,000-word vocabulary, about 4% of the 

words that are encountered have not been seen previously and thus are considered OOV 

words (which, by definition, cannot be recognized correctly by the recognition system). 

 
 

Figure 10 – Bigram Language Perplexity for Encarta Encyclopedia 
 

 

 
Figure 11 – Out-of-Vocabulary Rate of Encarta Encyclopedia as a Function of the 

Vocabulary Size 
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e. Pattern Matching 

The job of the pattern matching module is to combine information (probabilities) from the 

acoustic model, the language model and the word lexicon to find the “optimal” word sequence, 

i.e., the word sequence that is consistent with the language model and that has the highest 

probability among all possible word sequences in the language (i.e., best matches the spectral 

feature vectors of the input signal). To achieve this goal, the pattern matching system is actually a 

decoder [11-13] that searches through all possible word strings and assigns a probability score to 

each string, using a Viterbi decoding algorithm [44] or its variants. 

The challenge for the pattern matching module is to build an efficient structure (via an 

appropriate Finite State Machine or FSM) [13] for decoding and searching large vocabulary, 

complex language models for a range of speech recognition tasks. The resulting composite FSMs 

represent the cross product of the features (from the input signal) with the HMM states (for each 

sound) with the HMM units (for each sound) with the sounds (for each word) with the words (for 

each sentence) and with the sentences (those valid within the syntax and semantics of the task and 

language). For large vocabulary, high perplexity speech recognition tasks, the size of the network 

can become astronomically large and has been shown to be on the order of 1022 states for some 

tasks. Such networks are prohibitively large and cannot be exhaustively searched by any known 

method or machine. Fortunately there are FSM methods for compiling such large networks and 

reducing the size significantly due to inherent redundancies and overlaps across each of the levels 

of the network. (One earlier example of taking advantage of the search redundancy is the dynamic 

programming method [45] which turns an otherwise exhaustive search problem into an 

incremental one.) Hence the network that started with 1022 states was able to be compiled down to 

a mathematically equivalent network of 108 states that was readily searched for the optimum 

word string with no loss of performance or word accuracy. 

The way in which such a large network can be theoretically (and practically) compiled to a 

much smaller network is via the method of Weighted Finite State Transducers (WFST) which 

combine the various representations of speech and language and optimize the resulting network to 

minimize the number of search states. A simple example of such a WFST is given in Figure 12, 

and an example of a simple word pronunciation transducer (for two versions of the word “data”) 

is given in Figure 13. 
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Figure 12 – Use of WFSTs to compile FSN to minimize redundancy in the network 

 

 
Figure 13 – Word pronunciation transducer for two pronunciations of the word “data” 

 
Using the techniques of Composition and Optimization, the WFST uses a unified 

mathematical framework to efficiently compile a large network into a minimal representation that 

is readily searched using standard Viterbi decoding methods. The example of Figure 13 shows 

how all redundancy is removed and a minimal search network is obtained, even for as simple an 

example as two pronunciations of the word “data”. 

f. Confidence Scoring 
 

The goal of the confidence scoring module is to post-process the speech feature set in order to 

identify possible recognition errors as well as Out-of-Vocabulary events and thereby to 

potentially improve the performance of the recognition algorithm. To achieve this goal, a word 

confidence score [46], based on a simple hypothesis test associated with each recognized word, is 

performed and the word confidence score is used to determine which, if any, words are likely to 

be incorrect because of either a recognition error or because it was an OOV word (that could 

never be correctly recognized). A simple example of a two-word phrase and the resulting 

confidence scores is as follows: 

  Spoken Input:  credit please 
  Recognized String: credit fees 
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  Confidence Scores: (0.9) (0.3) 
 
Based on the confidence scores, the recognition system would realize which word or words 

are likely to be in error and take appropriate steps (in the ensuing dialog) to determine whether an 

error had been made and how to fix it so that the dialog moves forward to the task goal in an 

orderly and proper manner. (We will discuss how this happens in the discussion of Dialog 

Management later in this article). 

7. Simple Example of ASR System – Isolated Digit Recognition 
 

To illustrate some of the ideas presented above, consider a simple isolated word speech 

recognition system where the vocabulary is the set of 11 digits (“zero” to “nine” plus the word 

“oh” as an alternative for “zero”) and the basic recognition unit is a whole word model. For each 

of the 11 vocabulary words we must collect a training set with sufficient, say K, occurrences of 

each spoken word so as to be able to train reliable and stable acoustic models (the HMMs) for 

each word. Typically a value of K=5 is sufficient for a speaker-trained system (that is a 

recognizer that works only for the speech of the speaker who trained the system). For a speaker-

independent recognizer, a significantly larger value of K is required to completely characterize 

the variability in accents, speakers, transducers, environments etc. For a speaker-independent 

system based on using only a single transducer (e.g., a telephone line input), and a carefully 

controlled acoustic environment (low noise), reasonable values of K are on the order of 100 to 

500 for training reliable word models and obtaining good recognition performance. 

For implementing an isolated-word recognition system, we do the following: 

1. for each word, v, in the vocabulary, we build a word-based HMM, vλ , i.e., we must 

(re-)estimate the model parameters vλ   that optimize the likelihood of the K training 

vectors for the v-th word. This is the Training phase of the system. 

2. for each unknown (newly spoken) test word which is to be recognized, we measure the 

feature vectors (the observation sequence), ],,,[ 21 NX xxx L=  (where each 

observation vector, xi is the set of MFCCs and their first and second order derivatives), 

we calculate model likelihoods, VvXP v ≤≤1),|( λ  for each individual word model 

(where V is 11 for the digits case), and then we select as the recognized word the word 

whose model likelihood score is highest, i.e., )|(maxarg
1

*
v

Vv
XPv λ

≤≤
= . This is the 

Testing phase of the system. 
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Figure 14 shows a block diagram of a simple HMM-based isolated word recognition system. 

 

Figure 14 – HMM-based Isolated Word Recognizer 

8. Performance of Speech Recognition Systems 

A key issue in speech recognition (and understanding) system design is how to evaluate the 

system performance. For simple recognition systems, such as the isolated word recognition 

system described in the previous section, the performance is simply the word error rate of the 

system. For more complex speech recognition tasks, such as for dictation applications, we must 

take into account the three types of errors that can occur in recognition, namely word insertions 

(recognizing more words than were actually spoken), word substitutions (recognizing an incorrect 

word in place of the correctly spoken word), and word deletions (recognizing fewer words than 

were actually spoken) [47]. Based on the criterion of equally weighting all three types of errors, 

the conventional definition of word error rate for most speech recognition tasks is: 

| |
NI NS NDWER

W
+ +

=  

where NI is the number of word insertions, NS is the number of word substitutions, ND is the 

number of word deletions, and |W| is the number of words in the sentence W being scored. Based 
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on the above definition of word error rate, the performance of a range of speech recognition and 

understanding systems is shown in Table 1 below. 

 

Corpus Type of Speech Vocabulary 
Size 

Word Error 
Rate 

Connect Digit String 
(TI Database) Spontaneous 11 (0-9, oh) 0.3% 

Connect Digit String 
(AT&T Mall Recordings) Spontaneous 11 (0-9, oh) 2.0% 

Connected Digit String 
(AT&T HMIHY) Conversational 11 (0-9, oh) 5.0% 

Resource Management 
(RM) Read Speech 1000 2.0% 

Airline Travel Information 
System (ATIS) Spontaneous 2500 2.5% 

North American Business 
(NAB & WSJ) Read Text 64,000 6.6% 

Broadcast News Narrated News 210,000 ~15% 

Switchboard Telephone 
Conversation 45,000 ~27% 

Call-Home Telephone 
Conversation 28,000 ~35% 

 
Table 1 – Word Error Rates for a Range of Speech Recognition Systems 

 
It can be seen that for a small vocabulary (11 digits) the word error rates are very low (0.3%) 

for a connected digit recognition task in a very clean environment (TI Database) [48], but we see 

that the digit word error rate rises significantly (to 5.0%) for connected digit strings recorded in 

the context of a conversation as part of a speech understanding system (HMIHY) [3]. We also see 

that word error rates are fairly low for 1000-2500 word vocabulary tasks (RM [49] and ATIS 

[40]) but increase significantly as the vocabulary size rises (6.6% for a 64,000 word NAB 

vocabulary, and 13-17% for a 210,000 word Broadcast News vocabulary), as well as for more 

colloquially spoken speech (Switchboard and Call-Home [50]) where the word error rates are 

much higher than comparable tasks where the speech is more formally spoken. 

Figure 15 illustrates the reduction in word error rate that has been achieved over time for 

several of the tasks from Table 1 (as well as other tasks not covered in Table 1). It can be seen 

that there is a steady and systematic decrease in word error rate (shown on a logarithmic scale) 
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over time for every system that has been extensively studied. Hence it is generally believed that 

virtually any (task-oriented) speech recognition system can achieve arbitrarily low error (over 

time) if sufficient effort is put into finding appropriate techniques for reducing the word error 

rate. 

 

Figure 15 – Reductions in speech recognition word error rates over time for a range of task-

oriented systems [51] 

If one compares the best ASR performance for machines on any given task with human 

performance (which often is hard to measure), the resulting comparison (as seen in Figure 16) 

shows that machines outperform humans by factors of between 10 and 50; that is the machine 

achieves word error rates that are larger by factors of from 10 to 50. Hence we still have a long 

way to go before machines outperform humans on speech recognition tasks. However, one should 

also note that under a certain condition an automatic speech recognition system could deliver a 

better service than a human. One such example is the recognition of a long connected digit string, 

such as a credit card’s 16-digit number, that is uttered all at once; a human listener would not be 

able to memorize or jot down the spoken string without losing track of all the digits. 
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Figure 16 – Comparison of human and machine speech recognition performance for a range of 

speech recognition tasks [52] 

9. Spoken Language Understanding 
 

The goal of the spoken language understanding module of the speech dialog circle is to 

interpret the meaning of key words and phrases in the recognized speech string, and to map them 

to actions that the speech understanding system should take. For speech understanding, it is 

important to recognize that in domain-specific applications highly accurate understanding can be 

achieved without correctly recognizing every word in the sentence. Hence a speaker can have 

spoken the sentence: “I need some help with my computer hard drive” and so long as the machine 

correctly recognized the words “help” and “hard drive”, it basically understands the context of the 

sentence (needing help) and the object of the context (hard drive). All of the other words in the 

sentence can often be misrecognized (although not so badly that other contextually significant 

words are recognized) without affecting the understanding of the meaning of the sentence. In this 

sense, keyword spotting [53] can be considered a primitive form of speech understanding, 

without involving sophisticated semantic analysis. 

Spoken language understanding makes it possible to offer services where the customer can 

speak naturally without having to learn a specific vocabulary and task syntax in order to complete 

a transaction and interact with a machine [54]. It performs this task by exploiting the task 
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grammar and task semantics to restrict the range of meanings associated with the recognized 

word string, and by exploiting a pre-defined set of ‘salient’ words and phrases that map high 

information word sequences to this restricted set of meanings. Spoken language understanding is 

especially useful when the range of meanings is naturally restricted and easily cataloged so that a 

Bayesian formulation can be used to optimally determine the meaning of the sentence from the 

word sequence. This Bayesian approach utilizes the recognized sequence of words, W, and the 

underlying meaning, C, to determine the probability of each possible meaning, given the word 

sequence, namely: 

( | ) ( | ) ( ) / ( )P C W P W C P C P W=  

and then finding the best conceptual structure (meaning) using a combination of acoustic, 

linguistic and semantic scores, namely: 

* arg max ( | ) ( )
C

C P W C P C=  

This approach makes extensive use of the statistical relationship between the word sequence and 

the intended meaning.  

One of the most successful (commercial) speech understanding systems to date has been the 

AT&T How May I Help You (HMIHY) task for customer care. For this task the customer dials 

into an AT&T 800 number for help on tasks related to his or her long distance or local billing 

account. The prompt to the customer is simply: “AT&T. How May I Help You?”. The customer 

responds to this prompt with totally unconstrained fluent speech describing the reason for calling 

the customer care help line. The system tries to recognize every spoken word (but invariably 

makes a very high percentage of word errors), and then utilizes the Bayesian concept framework 

to determine the meaning of the speech. Fortunately the potential meaning of the spoken input is 

restricted to one of several possible outcomes, such as asking about Account Balances, or new 

Calling Plans, or changes in Local service, or help for an Unrecognized Number, etc. Based on 

this highly limited set of outcomes, the spoken language component determines which meaning is 

most appropriate (or else decides not to make a decision but instead to defer the decision to the 

next cycle of the dialog circle), and appropriately routes the call. The Dialog Manager, Spoken 

Language Generation, and Text-to-Speech Modules complete the cycle based on the meaning 

determined by the Spoken Language Understanding box. A simple characterization of the  

HMIHY system is shown in Figure 17. 
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Figure 17 – Conceptual representation of HMIHY system 

The major challenge in spoken language understanding is to go beyond the simple 

classification task of the HMIHY system (where the conceptual meaning is restricted to one of a 

fixed, often small, set of choices) and to create a true concept and meaning understanding system. 

10. Dialog Management, Spoken Language Generation and Text-to-Speech Synthesis 

The goal of the dialog management module is to combine the meaning of the current input 

with the interaction history with the user in order to decide what the next step in the interaction 

should be. In this manner, the dialog management module makes viable fairly complex services 

that require multiple exchanges between the system and the customer. Such dialog systems can 

also handle user-initiated topic switching within the domain of the application. 

The dialog management module is one of the most crucial steps in the speech dialog circle for 

a successful transaction as it enables the customer to accomplish the desired task. The way in 

which the dialog management module works is by exploiting models of dialog to determine the 

most appropriate spoken text string to guide the dialog forward towards a clear and well 

understood goal or system interaction. The computational models for dialog management include 

both structure-based approaches (which models dialog as a pre-defined state transition network 

that is followed from an initial goal state to a set of final goal states), or plan-based approaches 

(which considers communication as executing a set of plans which are oriented toward goal 

achievement). 

The key tools of dialog strategy are the following: 

• Confirmation: used to ascertain correctness of the recognized and understood utterances 
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• Error recovery: used to get the dialog back on track after a user indicates that the system 

has misunderstood something 

• Reprompting: used when the system expected input but did not receive any input 

• Completion: used to elicit missing input information from the user 

• Constraining: used to reduce the scope of the request so that a reasonable amount of 

information is retrieved, presented to the user, or otherwise acted upon 

• Relaxation: used to increase the scope of the request when no information has been 

retrieved 

• Disambiguation: used to resolve inconsistent input from the user 

• Greeting/Closing: used to maintain social protocol at the beginning and end of an 

interaction 

• Mixed initiative: allows users to manage the dialog flow 

Although most of the tools of dialog strategy are straightforward and the conditions for their 

use are fairly clear, the mixed initiative tool is perhaps the most interesting one as it enables a 

user to manage the dialog and get it back on track whenever the user feels the need to take over 

and lead the interactions with the machine. Figure 18 shows a simple chart that illustrates the two 

extremes of mixed initiative for a simple operator services scenario. At the one extreme, where 

the System manages the dialog totally, the system responses are simple declarative requests to 

elicit information, as exemplified by the system command “Please say collect, calling card, third 

number”. At the other extreme is User management of the dialog where the system responses are 

open ended and the customer can freely respond to the system command “How may I help you?”.  

 

 

Figure 18 – Illustration of mixed initiative for operator services scenario  

Figure 19 illustrates some simple examples of the use of System Initiative, Mixed Initiative 

and User Initiative for an airlines reservation task. It can be seen that System Initiative leads to 

long dialogs (due to the limited information retrieval at each query) but the dialogs are relatively 
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easy to design, whereas User Initiative leads to shorter dialogs (and hence a better user 

experience) but the dialogs are more difficult to design. 

 

 
Figure 19 – Examples of mixed initiative dialogs 

 
Dialog management systems are evaluated based on the speed and accuracy of attaining a 

well defined task goal, such as booking an airline reservation, renting a car, purchasing a stock, or 

obtaining help with a service. 

The spoken language generation module translates the action of the dialog manager into a 

textual representation and the text-to-speech modules converts the textual representation into 

natural sounding speech to be played to the user so as to initiate another round of dialog 

discussion or to end the query (hopefully successfully). 

11. User Interfaces and Multimodal Systems 

The user interface for a speech communications system is defined by the performance of each of 

the blocks in the speech dialog circle. A good user interface is essential to the success of any task-

oriented system, providing the following capabilities: 

• It makes the application easy-to-use and robust to the kinds of confusion that arise in 

human-machine communications by voice 

• It keeps the conversation moving forward, even in periods of great uncertainty on the 

parts of either the user or the machine 
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• Although it cannot save a system with poor speech recognition or speech understanding 

performance, it can make or break a system with excellent speech recognition and speech 

understanding performance 

Although we have primarily been concerned with speech recognition and understanding 

interfaces to machines, there are times when a multimodal approach to human-machine 

communications is both necessary and essential. The potential modalities that can work in concert 

with speech include gesture and pointing devices (e.g., a mouse, keypad, stylus). The selection of 

the most appropriate user interface mode (or combination of modes) depends on the device, the 

task, the environment, and the user’s abilities and preferences. Hence when trying to identify 

objects on a map (e.g., restaurants, locations of subway stations, historical sites), the use of a 

pointing device (to indicate the area of interest) along with speech (to indicate the topic of 

interest) often is a good user interface, especially for small computing devices like tablet PCs or 

PDAs. Similarly when entering PDA-like information (e.g., appointments, reminders, dates, 

times, etc.) onto a small handheld device, the use of a stylus to indicate the appropriate type of 

information with voice filling in the data field is often the most natural way of entering such 

information (especially as contrasted with using an artificial typing language such as graffiti for 

Palm-like devices). Microsoft research has shown the efficacy of such a solution with the MIPad 

(Multimodel Interactive Pad) demonstration, and they claim to have achieved double the 

throughput for English using the multimodal interface over that achieved with just a pen stylus 

and the graffiti language. 

12. Summary 

In this article we have outlined the major components of a modern speech recognition and 

spoken language understanding system, as used within a voice dialog system. We have shown the 

role of signal processing in creating a reliable feature set for the recognizer, and the role of 

statistical methods in enabling the recognizer to recognize the words of the spoken input sentence 

as well as the meaning associated with the recognized word sequence. We have shown how a 

dialog manager utilizes the meaning accrued from the current as well as previous spoken inputs to 

create an appropriate response (as well as potentially taking some appropriate actions) to the 

customer request(s), and finally how the spoken language generation and text-to-speech synthesis 

parts of the dialog complete the dialog circle by providing feedback to the user as to actions taken 

and further information that is required to complete the transaction that is requested.  

Although we have come a long way towards the vision of Hal, the machine that both 

recognizes words reliably and understands their meaning almost flawlessly, we still have a long 
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way to go before this vision is fully achieved. The major problem that must yet be tackled is 

robustness of the recognizer and the language understanding system to variability in speakers, 

accents, devices, and environments in which the speech is recorded. Systems that appear to work 

almost flawlessly under laboratory conditions often fail miserably in noisy train or airplane 

stations, when used with a cellphone or a speakerphone, when used in an automobile 

environment, or when used in noisy offices. There are many ideas that have been advanced for 

making speech recognition more robust, but to date none of these ideas has been able to fully 

combat the degradation in performance that occurs under these non-ideal conditions. 

Speech recognition and speech understanding systems have made their way into mainstream 

applications and almost everybody has used a speech recognition device at one time or another. 

They are widely used in telephony applications (operator services, customer care), in help desks, 

in desktop dictation applications, and especially in office environments as an aid to digitizing 

reports, memos, briefs, and other office information. As speech recognition and speech 

understanding systems become more robust, they will find their way into cellphone and 

automotive applications, as well as into small devices, providing a natural and intuitive way to 

control the operation of these devices as well as to access and enter information. 
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