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Abstract: Camera calibration is an important step in 3D reconstruction of scenes. Many natural and man made objects
are circular and form good candidates as calibration objects. We present a linear calibration algorithm to
estimate the intrinsic camera parameters using at least three images of concentric circles of unknown radii.
Novel methods to determine the projected center of concentric circles of unknown radii using the projective
invariant, cross ratio, and calculating the vanishing line of the circle are proposed.
The circular calibration pattern can be easily and accurately created. Thecalibration algorithm does not require
any measurements of the scene or the homography between the images.Once the camera is fully calibrated
the focal length of zooming cameras can be estimated from a single image.The algorithm was tested with real
and synthetic images with different noise levels.

1 INTRODUCTION

Camera calibration is an essential step in many com-
puter vision and photogrammetric applications. It
consists of recovering the metric properties which are
encoded as a set of so-called internal parameters. It
has been a subject of active research with numer-
ous methods (Tsai, 1987; Strum and Maybank, 1999;
Zhang, 2000). Once the cameras are calibrated, the
projective relationship from 3D space to 2D image
can be established.

The existing camera calibration techniques can be
broadly classified as linear, (Grosky and Tamburino,
1990; Strum and Maybank, 1999), and non-linear
(Heikkila, 2000; Meng and Hu, 2003). The non linear
techniques have the disadvantage of requiring good
initial estimates of the intrinsic parameters and being
computationally intensive. If the starting point of the
algorithm is not well chosen the solution can diverge
or can get trapped in a local minimum. A linear ap-
proach is not plagued with these problems.

Camera calibration can also be broadly classified
based on the type of calibration object, viz. 3D cali-
bration object, and 2D calibration object. Most com-
monly used calibration procedures described in the
computer vision literature rely on a calibration object
with control points whose 3D coordinates are known

with a high degree of accuracy to obtain accurate re-
sults (Tsai, 1987; Heikkila, 2000). As compared to
a 3D calibration object, 2D calibration patterns offer
the advantage of easily creating an accurate calibra-
tion object; the calibration pattern can be printed on
a laser printer and mounted on a flat surface. Tech-
niques utilizing planar patterns require multiple views
of the calibration object (Strum and Maybank, 1999;
Zhang, 2000). The camera motion between the im-
ages need not be known.

Conics can be used instead of control points as it
is easy to match correspondences. They project onto
the image plane as ellipses from any view and have
been widely used before to estimate the camera pose
(Kanatani and Liu, 1993; Chen and Huang, 1999).
The use of circles and ellipses as 2D calibration ob-
jects have been increasing. There are various non-
linear planar calibration algorithms which use circles
and ellipses of known dimension as calibration object
(Yang et al., 2000; Kim and Kweon, 2001; Kim et al.,
2002; Abad et al., 2004).

We propose a novel linear method, which exploits
the Thales theorem for circles, to calculate the van-
ishing line of the circle and the corresponding Image
of the Circular Points (ICP’s). The camera intrinsic
parameters are then determined, from at least 3 im-
ages, using the Image of Absolute Conic (IAC) as



the calibration object. The projected center of con-
centric circles required by the calibration algorithm
is accurately determined using the cross ratio with-
out any knowledge of the circle radii. The calibration
method has the advantage of not requiring any metric
measurements nor any correspondences between the
images.

The paper is organized as follows. In section 2 we
describe the theory used; in section 3 we present novel
algorithms to find the projected center of concentric
circles and the vanishing line of the circle. In section
4 we discuss the camera calibration algorithm and the
results, which is followed by the conclusion.

2 THEORY

We adopt a perspective camera model with intrinsic
matrixK,

K =

[

fu s u0

0 fv v0

0 0 1

]

. (1)

wherefu andfv are the effective camera focal lengths
along the camera axesu andv, s is the skew of the
CCD plane and (u0,v0) is the coordinate of the image
center. A homogeneous point̃X = [X,Y,Z, 1] gets
projected tõx = [u, v, w] as

λx̃ = K [R T ] X̃

i.e. λx̃ = KMextX̃ = MX̃
. (2)

whereMext is the camera extrinsic parameter matrix
with R andT , the rotation matrix and the translation
vector from the world to the camera system respec-
tively andλ is a non zero scale factor.

Let a circle with radiusRc and center at[Xc, Yc, 0]
lie in the z plane of the world coordinate system. A
homogeneous point[X,Y, 1] on the circle satisfies the
equation
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[
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1

]

=0

i.e. XT CX =0

. (3)

This circle gets projected as the ellipseXT AX =
0, whereA is the matrix defining the ellipse and is
related to the circle up to a scale factorλ by

λA = H−T CH−1. (4)

whereH = K [ R1 R2 T ] = KMh is the ho-
mography transforming the circle into an ellipse;R1

andR2 are the first and second columns of the rota-
tion matrixR.

All circles pass through the circular pointsI =

(1, i, 0)
T andJ = (1,−i, 0)

T whose position is in-
variant to plane similarity transformation. A special

circle is the absolute conic which is an imaginary cir-
cle located in the plane at infinity and is also invariant
to similarity transformations. All circles intersect the
absolute conic and the line at infinity at the circular
points (Hartley and Zisserman, 2000). The absolute
conic, C∞ = I, forms a natural calibration object
with the IAC, ω, being related to the intrinsic matrix
under the homographyH∞ = KMh∞ by

ω = H−T
∞

C∞H−1
∞

= (KMh∞)
−T

I (KMh∞)
−1

= K−T M−T
h∞

M−1
h∞

K−1 = K−T K−1 .

(5)
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Figure 1: Projection of concentric circles

3 FROM CIRCLES TO
RECTANGLES

3.1 Projected Center of Circle

A 3D circle gets projected as an ellipse from any view
but the projected center of the 3D circle does not co-
incide with the center of the ellipse (J.L.Mundy and
A.Zisserman, 1992). The projected center of concen-
tric circles lies on the line joining the centers of the
projected ellipses (Kim and Kweon, 2001) and it can
be determined by using the projective invariant, cross
ratio. The cross ratio of four points(P1, P2, P3, P4)
is defined as



(a)

(b)

Figure 2: Projected center of circle
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Figure 3: Influence of noise on finding projected center of
circle
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Figure 4: Rectangle inscribed in a circle

CR (P1, P2, P3, P4) = d(P1,P2)∗d(P3,P4)
d(P1,P3)∗d(P2,P4)

. (6)

whered (j, k) =
√

(xj − xk)
2

+ (yj − yk)
2 is the

distance between pointsj and k. With three fixed
points the cross ratio is a monotonic function of the
fourth point. As any one point is made to move
along the line joining all the points the cross ratio in-
creases/decreases. For example, in figure 1, moving
point P3 closer to pointP4 causes the cross ratio to
decrease while moving pointP3 away from pointP4

causes the cross ratio to increase.
Consider four points lying on the diameter of two

concentric circles with centerPC as shown in figure
1(a). For these four points we have

CR (P1, P2, PC , P3) = CR (P4, P3, PC , P2) . (7)

As the cross ratio is a projective invariant the same
is true for figure 1(b) which is a projection of the con-
centric circles in figure 1(a). The algorithm for find-
ing the circle center then involves :

1. Initializing the projected circle center as the inner
ellipse center

2. A binary search along the line joining the two el-
lipse centers bounded by pointsP2 andP3
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(c) Mean error for skew
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Figure 5: Influence of noise in calculating intrinsic parameters

(a) If CR (P1, P2, PC , P3) > CR (P4, P3, PC , P2)
then movePC towards pointP3

(b) If CR (P1, P2, PC , P3) < CR (P4, P3, PC , P2)
then movePC towards pointP2

Due to the monotonic nature of the cross ratio the
algorithm always converges, usually in 2-3 iterations.
In figure 2 the circle center was correctly calculated as
(333.86, 190.76) for a real image. Figure 3 shows the
result of a simulation of finding the projected center
of circle; the simulation parameter details are given
in section 4.2 along with the calibration results . The
algorithm is observed to be very robust to noise per-
turbations and correctly calculates the projected circle
center while the ellipse centers do not coincide with
the projected circle center.

3.2 Vanishing Line of a Circle

The vanishing line is the image of the line at infinity
and its intersection with the image of a circle gives
the image of circular points. Any two lines through a
circle center form the diagonals of a rectangle. Figure
4 illustrates this with linesP1PCP3 andP2PCP4 be-
ing the diameters of the circle and inscribing a rectan-

gleP1P2P3P4. The procedure for finding the vanish-
ing line starts off with intersecting two lines passing
through the projected center of circle with an ellipse,
the image of the circle. This gives a quadrilateral
P1P2P3P4, figure 4(b), which is the image of a rect-
angle. Thus intersecting linesP1P2 andP4P3 gives
one vanishing point while intersecting linesP1P4 and
P2P3 gives another vanishing point. The two van-
ishing points are then used to compute the vanishing
line.

4 CAMERA CALIBRATION

4.1 Calibration Algorithm

The procedure for calibrating the camera involves the
following steps :

• Capture 3 views of the concentric circles and for
each image

– fit ellipses using the direct least squares method
(Fitzgibbon et al., 1999)
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Figure 6: Effect of increasing the number of images on calculating intrinsic parameters

Table 1: Comparison of Calibration results
fu fv s u0 v0

Proposed Algorithm 812.03 810.31 -0.6 314.25 239.47
Zhang’s Planar Calibration 788.83 789.27 0 318.73 241.13

– Calculate the projected center of the circles as
described in section 3.1

– Estimate the vanishing line as explained in sec-
tion 3.2

– Intersect the vanishing line with an ellipse to get
the two ICP’s.

• Fit an ellipse to the 6 ICPs to obtain the Image of
IAC

• Perform Cholesky Decomposition of the IAC ma-
trix to obtain the camera intrinsic parameters

Once the camera is calibrated the ICP’s from a sin-
gle image can be used to estimate the focal length of
zooming cameras (Strum and Maybank, 1999).

4.2 Calibration Result

The accuracy of the proposed algorithm was tested
using simulations. The simulations were performed
with circles of radii 120mm and 60mm with 400
points per circle and a camera with intrinsic matrix

K =

[

845.79 0.1 315.24
0 875.46 226.13
0 0 1

]

. (8)

The camera was setup in 6 different locations with
the projection of the larger circle varying as an ellipse
with half major axis length of 130-190 pixels and the
half minor axis length of 80-150 pixels. For trials with
less than 6 images, all possible camera pose combina-
tions were used. Thus when calibrating using just 3

images, the 6 camera poses provide
(

6
3

)

= 120 sets to
work with. The projected circle points were perturbed
with zero mean gaussian noise while the standard de-
viation was varied from 0 to 4 pixels. Figure 5 shows
the accuracy of the technique in estimating the intrin-
sic parameters at various noise levels for 200 indepen-
dent trials. The estimation error is found to be small
and its standard deviation increases with the noise lev-
els. In figure 6 we observe that the standard deviation
of the estimated intrinsic parameters decreases with
the increase in the number of images used for calibra-
tion.

The algorithm was also tested with real images
of dimension 640 by 480 taken by a Sony Lipstick
camera. Table 1 gives the results of camera calibra-
tion with the proposed algorithm and Zhang’s (Zhang,
2000) method. The results are comparable, the dif-
ference could be accounted by the use of non linear
minimization and estimation of distortion coefficients
in (Zhang, 2000).

5 CONCLUSION

We proposed a novel camera calibration method us-
ing concentric circles. An algorithm for estimating
the projected center of concentric circles without us-
ing any radii information was developed. A method
for finding the vanishing line of a circle and the cor-
responding ICP’s was proposed. The calibration pro-
cess does not require any measurements of the planar
pattern; thus any natural pattern of concentric circles



can also be used as a calibration object. Experiments
with simulated data as well as real images showed
the insensitivity of the algorithm to varying levels of
noise. The estimated intrinsic parameters had low
mean errors and standard deviation. Increasing the
number of images beyond the minimum value of 3 re-
sulted in a decrease in standard deviation of the errors.
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