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Abstract
Earlier research has shown that the maximum spectral transition 
positions are related with the perceptual critical points that 
contain the most important information for consonant and 
syllable perception. This paper presents a quantitative analysis 
of the relation, in time, between the maximum spectral 
transition positions and the phone boundaries in fluent read 
speech. This analysis is based on the training part of the TIMIT 
American English database which contains both phone 
boundaries and labels manually-determined by a group of 
experts. The results of this analysis show that there is a 
significant correlation between the maximum spectral transition 
positions and the manually selected phone boundaries. This, in 
turn, suggests that there is an important relation between the 
commonly accepted phone boundaries and the perceptual 
critical points. 
Index Terms:  phone boundaries, spectral transition, phonemes 

1. Introduction
Accurate phone boundaries are important (and essential) for 
acoustic-phonetic analysis, automatic speech recognition 
(ASR), and speech synthesis systems. However, the process of 
manually determining phonetic transcriptions and segmentations 
is laborious, expensive, and requires expert knowledge. In 
addition, there is always some disagreement among the experts 
with respect to the exact position, in time, of some phone 
boundaries. Because the cost and effort required for this process 
are significant for large databases, the need to automate it is 
mainly motivated by the need for large speech databases used to 
train and evaluate new ASR systems or to build concatenative 
text-to-speech (TTS) systems. Many automatic phonetic 
segmentation and labeling methods have been proposed for such 
purposes. References [1] and [2] provide overviews and 
comparisons of such methods, most of which are based on 
forced recognition and alignment starting from the orthographic 
transcription of the speech material.  

Automatic segmentation and detection of the phone 
boundaries within a sentence can also be achieved by 
employing simpler algorithms based on acoustic rate of change 
or boundary models [3], [4]. Such methods do not involve a full 
phonetic recognition process and they do not provide the 
detailed phonetic transcription of the sentence.

Regardless of the type of method used for automatic 
phonetic segmentation, evaluation of the accuracy of these 
methods usually relies on a manually segmented and labeled 
speech database. However, the criteria and cues used in the 
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atic and manual phonetic segmentation, respectively, need 
e exactly the same. For example in the utterance “she’’ a 
er might place a boundary at the beginning of voicing 
eas an automatic boundary detector, based on spectral rate 
ange, might place the same boundary at a position which 
sponds to the peak in the spectral rate of change. Previous 
 has shown that the maximum spectral transition positions 
n close proximity (within approx. 10 ms) to the perceptual 
al points that carry the most important information for 
onant and syllable perception [5]. This paper presents a 
titative analysis of the relation between the maximum 
ral transition positions and the manually obtained phone 
daries in fluent read speech.

2. Method
quantitative analysis is achieved by comparing the phone 
dary positions obtained from a manually segmented speech 
ase with the boundary positions obtained by means of an 
atic segmentation method based on maximum spectral 

of change. It should be noted that the resolution of the 
atic method depends on the frame step (10 ms in this 

r) of the analysis window, whereas the resolution of the 
al method is at the audio sampling step (0.0625 ms). 

Speech corpus 
nalysis performed in this study was done using the training 

of the TIMIT American English acoustic-phonetic corpus 
his database contains utterances from 462 speakers, each 

ng 10 sentences. The transcription uses 61 phonetic 
ols for segmentation and labeling. Not all of these 61 
ols represent phonemes in American English; e.g., the stop 

onants are represented as two separate segments and 
ols: one for stop closure and one for stop burst. This 
et contains 172,460 between-phone boundaries manually 
mined by experts. These boundaries do not include the 
daries placed at the beginning and end of the sentences.

Spectral features 
he spectral features used in this study are the Mel-

uency Cepstrum Coefficients (MFCC). These spectral 
res are extensively used in ASR and details on their 
utation can be found in [7]. For each sentence in the 
ase, the speech signals are first transformed into spectral 

es (computed over 32 ms Hamming windows) and then 
formed into a set of 10 MFCC coefficients (excluding the 
order coefficient that represent the total energy). The total 
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energy coefficient was not used here because this analysis
focuses on the spectral features alone. The frame rate employed
in this study was 100/s (10 ms frame step or frame increment). 
Also the dynamic MFCC coefficients were not directly used in
this study since the spectral rate of change represents a dynamic
measure by itself.

2.3. Spectral transition measure 
The criterion used in this study for phonetic segmentation was
based on a measure of the spectral rate of change in time. Since
the spectral rate of change usually displays peaks at the 
transition between phones, such a measure can be used to detect 
boundaries between phones. It should be noted that not all the
peaks in the spectral rate of change correspond to a valid
boundary between phones.  For example, a diphthong would
display a peak of the spectral transition measure approximately
located at its center; however this does not represent a valid 
phone boundary.

The spectral transition measure employed in this study was
the same as that proposed in [5] and it can be interpreted as the 
magnitude of the spectral rate of change. This spectral transition 
measure (STM), at frame m, can be computed as a mean-
squared value 
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where D is the dimension of the spectral feature vector (10 in 
this case) and is the regression coefficient or the rate of
change of the spectral feature  defined as 
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where n represents the frame index and I represents the number 
of frames (on each side of the current frame) used to compute
these regression coefficients. We use I=2 for a 10 ms frame step 
corresponding to an interval of 40 ms centered on the current 
frame at which the STM value is computed. A larger interval
could result in missing some phone boundaries whereas a 
shorter interval could result in the detection of too many false 
phone boundaries. 

2.4. Boundary detection 
The detection of the phone boundaries used here involves two
steps: a peak picking method and a post-processing method for 
removing spurious (false) boundaries. First, all the peaks in the 
spectral transition measure, computed every frame, are marked
as possible phone boundaries. Then the boundaries 
corresponding to the peaks that are not higher than the adjacent
STM values by at least 1% of the highest peak in each sentence
are removed. The 1% threshold was determined experimentally.
A second criterion for removal of spurious boundaries is to 
compare the STM peak values with those of the adjacent valleys
on both sides. The valleys usually occur at much larger distance
than the adjacent frames used in the first part of the post-
processing. If the difference between the value of each peak and 
the values of its adjacent valleys (on both sides) is not larger 
than 10% of the peak value, then that peak corresponds to a flat 
STM region and it is removed from the boundary list. Each of
the automatically detected phone boundaries is placed in time at 
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igure 1 presents typical results of the automatic phone 
dary detection for the first 1 s portion of a TIMIT sentence 
 frame step size of 10 ms. The first plot at the top displays
peech signal and the manually placed phone boundaries
ical bars) and labels. The abscissa represents the time in 
The second plot displays the STM values for the first 100
es and the automatically detected phone boundaries after 
processing. The third plot displays the STM values and the
ed phone boundaries. The fourth plot displays the STM
s and the inserted (spurious) phone boundaries. The 
ssa in each of the last three plots is the frame index. In the 
 plot one can see that the detection algorithm missed three 
daries. These correspond to three phones whose boundaries 
ifficult to detect using this method: stop burst /d/, stop 
re /kcl/, and flap /dx/. An STM peak is totally missing
een /d/ and /ow/, between /kcl/ and /m/, and between /dx/ 
ix/ whereas the peak between /ih/and /dx/ is very small and
nd it was removed from the phone boundary list.

me position (multiple of the frame step). No attempt was 
 to remove the spurious phone boundaries detected in the
al region of diphthongs and similar sounds.

3. Analysis results 
der to perform the comparison between the manually and
atically placed phone boundaries the former are converted 

e closest adjacent frame positions. This is done because the
e sampling is at multiples of the frame step size and the 
al boundaries are distributed uniformly within the frame 
intervals. Thus this boundary conversion to the closest 

e positions induces an average absolute difference equal to
rter of the frame step and a maximum absolute difference 

l to half of the frame step. Because there is no way to 
nate this fixed difference, for a given frame step, the 
arison of the automatically detected boundaries is done 
the converted boundaries and not with the original 

daries.

Figure 1 Results of the automatic detection process.

n order to observe the systematic behavior of the automatic 
tion method, the results of processing another token of the
sentence but from a different speaker are presented in 

re 2.



Figure 2 Another example of results for the automatic 
detection process.

One can see in both figures that the most accurate phone
boundaries correspond to the fricative /s/, which is delimited by
two strong STM peaks. In both figures the boundary between
the stop burst /d/ and the following vowel is missing, as well as 
the boundary delimiting the end of /kcl/ and the boundaries of
the flap /dx/. These boundaries correspond in general to very
short (transient) speech events. If the detection algorithm
increases its time resolution by decreasing the frame step and 
the STM computation interval ([-I,I] from Eq. 2) then spurious 
boundaries will be inserted due to more “noisy” STM values.
Such spurious boundaries are frequently detected in the /h#/ and 
/sil/ segments (an example is shown in Figure 2). 

Table 1 presents boundary counts and percentages for the
automatic phone boundary detection experiment. The manually
derived boundaries are represented as (Man.) and the
automatically derived boundaries are represented as (Aut.).

Table 1. Automatic phone boundary detection results

Total
(Man.)

Detected
(Aut.)

Missed
(Aut.)

Inserted
(Aut.)

Count 172,460 145,950 26,510 48,566
Percent 100% 84.6% 15.4% 28.2%

Approximately 85% of the manually placed phone
boundaries from the training part of TIMIT were detected by the 
automatic method based on the spectral transition measure
alone. Thus, about 15% of the original manual boundaries were 
missed, but another 28% spurious boundaries were inserted. By
removing all the missed and inserted boundaries a more detailed
analysis can be made by examining the deviation in time
between the detected boundaries at the maximum spectral 
transition positions and the manually placed boundaries. 

Figure 3 presents a normalized histogram of the absolute 
deviations between the 145,950 automatically detected 
boundaries and the corresponding 145,950 manually placed 
boundaries (26,510 boundaries were removed).
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Figure 3 Normalized histogram showing the absolute 
deviation between the145,950 automatically detected 
boundaries  and the corresponding 145,950 manually 

placed boundaries.

t can be seen that about 27% of the automatically detected 
daries (using the maximum spectral transition criterion) 
ide with the manually placed boundaries. Moreover 
er 43% are within 10 ms of the manual boundaries and 
er 20% are within 20 ms. Figure 4 presents a normalized 
lative histogram derived from the histogram in Figure 3.
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igure 4 Normalized cumulative histogram showing the 
absolute deviation between the145,950 automatically 
detected boundaries  and the corresponding 145,950 

manually placed boundaries.

rom this last figure it can be seen that about 70% of the
atically detected boundaries are within 10 ms of the 

ally placed boundaries, 89% are within 20 ms, 95% are
n 30 ms, and 97% are within 40 ms, respectively.

4. Discussion
above results suggest that there is a significant correlation
een the phone boundaries determined by experts and the 



corresponding boundaries automatically detected using the 
maximum spectral transition criterion.  These results are based 
on data from all the 4,620 sentences from the 462 speakers and 
over all types of phones. A similar analysis was performed on 
the same database but with a frame step of 5 ms.  The overall 
results were better for the 10 ms frame step.  Hence we will not 
discuss results using a 5 ms frame step in this paper.

A brief comparison with earlier results shows the following. 
In [3] the percentage of detected boundaries within 20 ms from 
the manually placed boundaries (using the same TIMIT 
database) was between 60.5% and 96.1%, depending on the 
type of transition, with an overall average of 73.8%. This 
performance is significantly below the 89% figure obtained here 
for concurrence in boundary to within 20 ms. 

In reference [8] results on automatic alignment of phonemic 
labels to within an interval of 20 ms were 88.1% when tested on 
the data used for training and 82.3% for unseen data. The 
detection methods in both [3] and [8] used training data to train 
the detection models whereas the method used in this paper 
does not use phonetic or transitional models for boundary 
detection.

Other results on TIMIT using automatic aligners have been 
reported in [9] and [10]. In [10] it was shown that 71% of the 
aligned boundaries using the Aligner [9] were within 16 ms, 
90% were within 32 ms, and 97% were within 64 ms from the 
manually placed boundaries. The results in [1] using a standard 
HMM-based segmentation algorithm show 85.9% of the 
detected boundaries to be within 20 ms from the manually 
derived boundaries. As discussed above, the comparable results 
from the automatic detection method described in this paper are 
significantly better. One mitigating factor in [10] was that the 
speech was sampled at an 8 kHz rate rather than at the 16 kHz 
rate used in this paper. However, there might be other 
differences among these methods with respect to how the 
boundaries were counted and how the models were trained. 

5. Conclusions
This paper presented a quantitative analysis of the relation 
between the phone boundaries automatically detected at the 
maximum spectral transition positions and the manually 
detected boundaries in the training part of the TIMIT database. 
This analysis represents an initial approach to a more refined 
analysis and to a development of an automatic phonetic 
boundary detector. Such phonetic boundary detector is intended 
to be part of a larger research project focusing on non-
conventional ASR [11]. As yet there have been very few 
measures taken to remove the spurious (false) boundaries and 
no measure taken to reduce the missed boundaries while 
maintaining a small number of inserted boundaries. Future work 
will focus on these problems and may employ additional 
acoustic features. 

Another future direction is to perform a more detailed 
analysis of the phonetic segments and labels that have a high 
rate of missed or inserted boundaries. A similar analysis can be 
performed to see the degree of deviation of the detected 
boundaries from the manually placed boundaries with respect to 
particular types of phonetic transitions (e.g. stop burst to vowel, 
fricative to nasal, etc.).  

Since it was shown in [5] that there is a close proximity 
between the maximum spectral transition positions and the 
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ptual critical points that carry the most important 
mation for consonant and syllable perception, it appears 
based on the current results, there is also a close relation 
een the commonly accepted phone boundaries and the 
ptual critical points. Complementary to the results from [5] 
s recently shown in [12] that indeed the manually placed 
e boundaries contain very significant information about the 
l identity, especially in the dynamic spectral features. 
ever, more studies are required in order to fully clarify this. 
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