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In terms of the new variables, (22) becomes and N are allowed to vary separately. By the use of matrix in- 

= RN [(H;3)T h; + (H;3)T h:] . 

Substituting (81) and (82) into (74) and (75) yields the de- 
sired recursive relations 

g3 = 6 + Ag3 = 8 - RN(H;3)T [I- H;3RN(H;3)T] -’ 

- (h; - Hz3 8) (83) 

(84) 

and 

a^;=h;-H;383. (85) 

Once again, the new estimates a^” and 8” are equal to the 
sum of the old estimates and their corresponding correction 
terms. After the g3-vector is found, the newly added vector 
a^: is then obtained from (85). 

IV. CONCLUSION 

The problem under consideration has been to design a re- 
cursive digital filter which closely approximates the desired 
discrete impulse response in the least-square sense. In partic- 
ular, sequential refinement schemes have been developed using 
matrix inversion lemmas for three distinct cases in which K, M, 

version lemmas, the problem of inverting a potentially high 
dimensional matrix has been simplified considerably; thus 
without having to repeat the entire calculation, the new sets 
of fnter coefficients can be obtained recursively based on the 
old estimates and the new data. In this manner, one can refine 
the preliminary filter design by increasing the dimension num- 
bers successively with a minimum computational effort. The 
combined use of these sequential schemes will greatly enhance 
the performance of a recursive digital filter. 
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The Predictability of, ‘Certain Optimum Finite - 
Impulse-Response Digital Filters, 

LAWRENCE R. RABINER AND OTTO HERRMANN 

A6stmct-Some of the properties of optimal solutions to the fmite- 
impulse-response low-pass filter design problem are discussed. These 
solutions are optimum in the sense of discrete Chebyshev approxima- 
tion over a union of closed compact sets, i.e., the error of approxima- 
tion exhibits at least (N + 3)/2 alternations (of equal amplitude) over 
the frequency ranges of interest, where N is the duration of the filter 
impulse response in samples. It has been shown that, in certain special 
cases, the solution can exhibit (N+ 5)/2 alternations of equal amph- 
tude. These solutions have been called extraripple filters because of 
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the extra alternation that is present. How these extraripple solutions 
can, within bounds, be scaled to yield additional solutions, which are 
still1 optimal over new frequency ranges, is shown: Thus an infinite 
number of optimal low-pass filters may be obtained directly from a 
finite number of extraripple solutions. An interpretation of the various 
types of optimal filters, in terms of locations of the zeros of the z- 
transform polynomial, is also given. 

INTRODUCTION 

A GOOD DEAL of attention has been focused recently on 
the design of optimal finite-impulse-response (FIR) low- 

pass digital filters with linear phase [l] - [7] . In particular, the 
problem of designing an optimal approximation (in the 
Chebyshev sense) to a low-pass filter with specified passband 
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and stopband cutoff frequencies and a specified ratio of 
passband-to-stopband ripple for a fixed-order filter has been 
completely solved. Although computational techniques for 
designing such filters have been developed and shown to be 
exceedingly fast [8], several theoretical issues concerning the 
solutions still remain. For example, depending on the pass- 
band cutoff frequency, the amplitude response of the optimal 
solution may exhibit either (N + 3)/2 or (N + 5)/2 equal am- 
plitude ripples, where N is the duration of the filter’s impulse 
response. In some cases there is one ripple which is smaller 
than all the other ripples. It is the purpose of this paper to 
explain these and other theoretical issues. For a further dis- 
cussion of the general optimal filter design problem the reader 
is referred to [l] , [4] , and [5] . 
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CHARACTERISTICSOFOPTIMALLOW-PASSFILTERS 

Let (h(n),n=-(N- 1)/2;.- , (N - 1)/2} be the impulse re- 
sponse of the digital filter. (N is assumed odd throughout this 
paper.) The impulse response satisfies the symmetry condition 

h(n)=h(-n), 09nGN+ (1) 

to give the desired linear phase [ 1 ] . The frequency response of 
the filter can be written as 

N-I 

iT@“f) = h (0) + 5 2h (n) cos (27rfn). (2) 
n=l 

The response of the ideal low-pass filter D(eiznf) can be writ- 
ten as 

where Fp’ and F, are the normalized passband and stopband 
cutoff frequencies, i.e., 0 < Fp, F, < 0.5. 

Fig. 1 shows plots of both the frequency resljonse (H(ej2”f)) 
and the approximation error (H(e’2”f) - D(ej”“f)) of a typical 
equiripple approximation of a low-pass filter. The maximum 
errors of approximation in the passband and stopband are 6r 
and iS2, respectively. The normalized width of the transition 
bandisAf=F,-Fp. 

The criterion for optimal amplitude characteristics is that for 
specified Fp and F,, the weighted approximation error can 
have either (N + 3)/2 or (N + 5)/2 extrema, where the weighted 
error is defined as 

E(ej*d) = ~(~i*d) p(ej*nf) _ fqeh93 (4) 

where FV(eiznf) . rs a weighting function which allows the de- 
signer to specify the relative magnitude of the error in the pass- 
band and stopband and is defined by 

(5) 

\A / 
f 

I I 
0.3 0.4 0.5 

FP F* 

Fig. 1. Frequency response and error curve for an equiripple low-pass 
filter. 

Thus for the optimum filter, the extrema of the weighted 
error curve must alternate in sign, and be equal in magnitude, 
i.e., 

E(ei*nFi) = -E(ei*nFi+l), i=1,2;-- , (N + 1)/2 (6) 

where Fi, i = 1, * * * , (N + 3)/2, are the frequencies at which 
the error extrema occur. 

Filters which have (N + 5)/2 extrema have been called extra- 
ripple ftiters [5] and have been shown to be minima along the 
curve of transition width (AF) versus passband cutoff (Fp) for 
fixed values of 6 r and ?j2 [7] . Since these extraripple filters 
have in some sense an extra degree of freedom, it seems that it 
should be possible to scale these fdters (in frequency) and ob- 
tain new filters (with different Fp and F,) which still satisfy 
the optimality criterion discussed above. In the remainder of 
this paper we discuss such a scaling procedure and illustrate its 
application with examples. An interpretation of the curve of 
AF versus Fp for fixed 6r and S2 in terms of the motion of 
the zeros of the filter is also provided. 

SCALED EXTRARIPPLE FILTERS 

Consider the transformation 

x = 0.5 - 0.5 cos (27rj). (7) 

The interval 0 <f < 0.5 is mapped to the interval 0 < x < 1 .O. 
It is readily shown that the trigonometric polynomial H(ejznf) 
(2) is converted to a standard polynomial in x of the form 

= 2 a(n)xn 63) 
n=o 
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where the sequence {a(n)} is related to the sequence (h(n)) in 
a direct manner [4]. The cutoff frequencies Fp and F, are 
mapped to the values XP and X, as defined by (7). 

The linear transformation 

x’=ax+p (9) 

can now be applied to P(x) to yield a new polynomial P(x’) of 
the form 

w’> =w(x’=ax+p 
N-l 

= 5 b(n)(x’)” (10) 
n=o 

which is identical in form to (8) and thus corresponds to an 
FIR filter. 

The mapping of (9) has two unspecified constants a! and fi 
which determine the interval in x, which is mapped’ to the in- 
terval 0 < x’ < 1. Two possibilities are considered. 

Case I: (a) The point x = 0 is mapped to x’ = 0. (b) The 
point x = XP is mapped to x’ = XL with XL > X7. 

Case 2: (a) The point x = 1 is mapped to x = 1. (b) The 
point x = X, is mapped to x’ = XL with XL < X, . 

Case 1 leads to the following values for (Y and /I: 

p=o 

a =x;/x,. 

Case 2 leads to the following values for a! and p: 

x, - x; p=- 
xp- 1 

(11) 

x;, - 1 
&=x,-1* (12) 

For the case of extraripple filters this linear scaling can preserve 
the necessary conditions for the optimality of the filter. This 
process is illustrated in Fig. 2. Fig. 2(a) shows P(x) for an 
extraripple filter with cutoff frequencies XP and X,. P(x) has 
(N + 1)/2 extrema in this example, where N = 11. (The error 
curve has (N + 5)/2 extrema since it has extrema at x = X, and 
x =X,.) By using the linear transformation of Case 1, the 
curve P(x’) is obtained as shown in Fig. 2(b). In this case 
P(x’) still has (N + 1)/2 extrema but the extremum at x = 1 is 
not of value +6* but instead is smaller. However the filter still 
satisfies the optimality criterion discussed earlier and is thus an 
optimal filter. 

By making Xb (the point which XP maps to) successively 
larger, the amplitude of the extremum at x = +l gets succes- 
sively smaller until it just becomes equal to -h2 (i.e., the ex- 
tremum disappears). This case is illustrated in Fig. 2(c). At 
this point P(x’) has exactly (N- 1)/2 extrema, all of equal 
amplitude. Scaling beyond this point will produce a fnter 
which no longer satisfies the optimality criterion. 

Fig. 3 illustrates what happens in Case 2. Fig. 3(a) again 
shows P(x) for the extraripple filter. By using the linear trans- 

lb) 

Fig. 2. Linear scaling of the polynomial P(x) with x = 0 mapped to 
x’=Oandx=Xp mapped to x’ = Xb(Xi, > X,,). 

I 
I 
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Fig. 3. Linear scaling of the polynomial P(x) wJth x = 1 mapped to 
x’ = 1 and x = XP mapped to x’ = XP(XP < XP). 

formation of Case 2, the curve P(x’) still has (N t 1)/2 extrema 
but the extremum at x = 0 is not of value 1 - 6 r but instead is 
larger. Again the scaled filter still satisfies the optimality cri- 
terion discussed earlier and is thus an optimal filter (although 
with different cutoff frequencies). 
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By making Xi successively smaller, the amplitude of the ex- 
tremum at x = b gets successively larger until it just becomes 
equal to 1 t&r. This case is illustrated in Fig. 3(c). As be- 
fore, at this point P(x’) has exactly (N - 1)/2 extrema, all of 
equal amplitude. Scaling beyond this point will produce a 
filter which no longer satisfies the optimality criterion. 

Since the scaling is linear it is easy to see that AX’, the tran- 
sition bandwidth of the scaled filters, must always be greater 
than AX of the extraripple filter. For Case 1, for example, the 
stopband value X, is scaled to XL defined as 

Therefore, 

x+xs. 
P 

(14) 

=AX$ >AX 
P 

(16) 

since Xb > Xp . 
Similarly for Case 2, 

x’ =mx; - o+<xp -x;> 
s 

xp-I . 

Therefore, 

AX’=X:,- X; 

(17) 

(18) 

=?I :; (X,-X,) 
P 

09) 

cm 

since XL < X,. Thus the fact that extraripple filters are min- 
ima along the curve of AF versus Fp is verified by the scaling 
argument. (The mapping from x to f is monotonic so the 
above statement concerning AX versus Xp can be extended to 
AF versus Fp :) 

It is straightforward to determine the range of scaling which 
can be used in Cases 1 and 2 and which still preserves the op- 
timality criterion. In Case 1, the most scaling which can be 
tolerated is the case where the largest extremum value [de- 
noted as X, in Fig. 2(a)] is mapped to x’ = 1 .O. (Of course 
x = 0 is still mapped to x’ = 0.) These conditions give 

p=o 
cr = l/XH. (21) 

The new cutoff frequencies XL and Xl are determined as 

x; = Xp/XH 

x[, = x,/x,. (22) 

.loc 

.O% 

,092 

l- 

I- 

.064 I- 

1 1 I 1 1 I 1 I. 1 . 

N =I1 

6, = s,=o.r 

I I I I I I I I .060- 
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PASSBAND CUTOFF FREQUENCYtFp) 

Fig. 4. Transition bandwidth versus passband cutoff frequency for filters 
with N = 11, 6 1 = 62 = 0.1, showing in heavy lines the regions of the 
curve which are scaled extraripple filters. 

The new filter cutoff frequencies (in the f-space) flp, FL are re- 
lated to Xb and Xi by the inverse of (7), which is 

f= 
cos-‘(1 - 2x) 

2n ’ (23) 

In Case 2, the most scaling which can be tolerated is the case 
where the smallest extremum value [denoted as XL in Fig. 
3(a)] is mapped to x’ = 0 (x = 1 is stilled mapped to x’ = 1). 
These conditions give 

a = l/(1 - X,) 

p =-X,/(1 - X,). (24) 

The cutoff frequencies Xb and Xl are determined as 

xp - XL zp =- 
1 - x, 

x,-x, x[, = ___ 
I-X,. 

(25) 

EXAMPLES 

According to the preceding discussion, a fairly large class of 
of optimal filters may be determined from the set of extra- 
ripple designs for fixed values of 6 r and 6 *. In this section 
examples are presented to demonstrate this effect. 

Fig. 4 shows a plot of AF versus Fp for filters of duration 
N = 11 samples with 6 r = h2 = 0.1. This curve is identical to 
the one in [7] . The five points corresponding to extraripple 
designs are denoted by ERI , ER2, * * * , ER5. The parts of the 
curve which are drawn in more heavily than the rest of the 
curve represents the class of optimal filters which are just 
scaled versions of the extraripple filters. Table I gives values of 
Fp, F,, FL, and FH (Xp, X,, XL, and X,) for the extraripple 
filters, as well as values of flp, F’,, XL, and X[, for the filters 
which represent the maximum tolerable scaling. These filters 
are labeled as points l-10 on Fig. 4. 
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TABLE I 
DATA ON FILTERS FOR N= ll,& =S, = 0.1 

ERl - 

Point 1 

Point 2 

ER2 - 

Point 3 

Point 4 

ER3 - 

Point 5 

Point 6 

ER4 - 

Point 7 

Point 8 

ER5 - 

Point 9 

Point 10 

FP = .034406 

x = 
P 

.011638 

FL = . 034406 

xL = .011638 

X' = 0. 
P 

FP' =O. 

"i 
= .012779 

F; = .036060 

FP = 
.1213330 

xp = .138395 

FL = .0795455 

XL = .061161 

"d 
= .082266 

F; = .092598 

X' = .150327 
P 

F' = . 126737 
P 

F 
P= 

.215756 

x =. 393247 
P 

FL = .0909091 

XL = .079373 

x; = .340935 

F' = 
P 

.198473 

x; = .427152 

F' = 
P 

.226729 

F 
P 

= .3108630 

xP = 
.686580 

FL = .0909091 

XL = . 079373 

' = .659558 
xP 
F; = .301693 

X' 
P 

= .731308 

FP = 
.326544 

F = 
P 

.4032010 

x = 
P 

.9103372 

FL = .0965909 

XL = .089290 

"i 
= .901546 

F;, = .398407 

X;, = .921056 

F; = .409344 

FS = . 096799 

xs = .089663 

FH = .4034091 

xa = . 9107104 

x; = .078944 

F' = 
s .090656 

xi = .098454 

F; = .101593 

Fs = .1891370 

x* = .3134196 

FR = .4090909 

Xa = .920627 

x,' = .268692 

F; = .173456 

X' = 
s .340442 

F' = . 198307 s 

Fs = .2842440 

xs = .6067526 

FR = . 4690909 

XH = . 920627 

x; = .572848 

F; = .273271 

x; = .659065 

F; = .301527 

Fs = . 378667 

xs = .861605 

FH = . 4204545 

X" = . 938839 

.Xs = .849673 

F; = .373263 

x; = .917734 

F; = .407402 

Fs = .465594 

Xs = .988362 

FR = .465594 

XH = . 988362 

x' = .987221 

F; = .463940 

x' =1 

Fl =.5 

N = 21 1 

\ -1 
.09 - 

,\,, 19 20 
.OE I I I I I I I 10 _ 

0 .05 .I0 .15 .20 25 .30 .35 .40 .45 50 

PASSBAND CUTOFF FREQUENCY (Fp) 

Fig. 5. Transition bandwidth versus stopband cutoff frequency for filters 
withN = 21, 61 = 0.01, 62 = 0.001, showingin heavy ties the regions 
of the curve which are scaled extraripple filters. 

Fig. 5 shows a plot of AF versus Fp for filters of duration 
N= 21 samples with 6r = 0.01, ?i2 = 0.0001, i.e., K = 100. 
The ten extraripple solutions are denoted as ERl-ERlO in 
Fig. 5. The heavy parts of the curve again represent the class 
of optimal filters which are scaled versions of the extraripple 
filters. The values corresponding to the maximum tolerable 
scaling are denoted as points I-20 in Fig. 5. Table II gives 
numerical values (in both f and x) for all these points as well 
as for the extraripple designs. 

REGIONS BETWEEN SCALED FILTERS 

As seen in Figs. 4 and 5, the scaling procedures explain a 
fairly large region of the curve of transition bandwidth as a 
function of passband cutoff frequency. However, there still 
remain regions between the scaled filters (the heavy lines in 
Figs. 4 and 5) which cannot be accounted for by a simple 
scaling argument. The behavior ofP(x), the polynomial repre- 
senting the filter, in these regions can be explained by the fol- 
lowing argument. Referring to Fig. 2, it is seen that at the 
extreme point of linear scaling [Fig. 2(c)] the last ripple of 
P(x) is scaled to x = 1.0. Additional linear scaling takes this 
ripple out of the region 0 G x < 1.0 and hence gives a filter 
which no longer satisfies the optimality criterion. However, 
the position of the last extremum ofP(x) can be mapped to a 
value beyond x = 1 .O with an amplitude less than -6 2 (in this 
case), at the same time preserving the value of -62 for the 
polynomial at x = 1 .O. The effect of this mapping is to increase 
both XP and X, [9] and hence generate the filters in the re- 
gion between the linearly scaled solutions. 

As the position to which the last extremum is mapped tends 
toward x = 03, the amplitude of the extremum also increases 
to infinity. At the point where the ripple is mapped to in- 
finity (with infinite amplitude), the filter obtained corresponds 
to the next lower order extraripple filter [7] . 

The last ripple may also be mapped to negative values of x 
in the range --co <x < 0. This region corresponds to parts of 
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TABLE II 
DATA ON FILTERS FOR N = 11, Cil = 0.01, & = 0.0001 

Point 1 

Point 2 

ER2 - 

Point 3 

Point 4 

ER3 - 

Point 5 

Point 6 

ER4 - 

Point 7 

Point 8 

ER5 - 

Point 9 

Point 10 

F = 
P 

0.0096290 

X = 
P 

0.0009148 

FL = 0.0096290 

XL = 0.0009148 

xP = 0. 

F; =O. 

x; = 0.0009307 

"i = 0.0097121 

F = 
P 

0.0501950 

X = 
P 

0.0246614 

FL = 0.0357143 

XL = 0.0125361 

' = 0.0122793 
xP 
FP = 0.0353451 

’ = 0.0250888 
xP 

' = 0.0506318 
FP 

F = 0.0984610 
P 

X = 
P 

0.0926686 

FL = 0.0446429 

XL = 0.0195414 

"i = 0.0745847 

“i = 0.0880496 

x; = 0.0942747 

‘i = 0.0993392 

F = 
P 

0.1472180 

X = 0.1990819 
P 

FL = 0.0476190 

XL = 0.0222136 

"i = 0.1808865 

“i = 0.1398340 

"L = 0.2020524 

‘;I = 0.1483987 

FP = 0.1950670 

xP = 0.3308291 

FL = 0.0476190 

XL = 0.0222136 

xP 
’ = 0.3156267 

F; = 0.1898935 

’ = 0.3350290 
xP 

' = 0.1964854 
FP 

Fs = 0.1517370 

Xs = 0.2105396 

Fi-l = 0.4583333 

XH = 0.9829629 

xi = 0.2098167 

F' = s 0.1514546 

Xi = 0.2141887 

F' = 0.1531571 s 

FS = 0.2027310 

Xs = 0.3536736 

FH = 0.4583333 

Xii = 0.9829629 

X6 = 0.3454684 

F' = 
P 

0.1999923 

x1 = 0.3598036 

F: = 0.2047677 

Fs = 0.2511880 

Xs = 0.5037322 

FR = 0.4583333 

Xii = 0.9829629 

X' = s 0.493841 

F' = s 0.248040 

X’ = s 0.512463 

F' = s 0.253968 

F* = 0.2980290 

Xs = 0.6486078 

FR = 0.4613095 

XIl = 0.9852983 

X' = s 0.6406248 

F' = 0.2953744 s 

X’ = 0.6582857 
5 

F' = 0.3012659 s 

Fs = 0.3431450 

x* = 0.7762028 

FI-I = 0.4642857 

XII = 0.9874639 

x: = 0.7711185 

F' = s 0.3412113 

xb = 0.7860568 

F' = 0.3469382 s 

ER6 - 

Point 11 

Point 12 

ER7 - 

Point 13 

Point 14 

ER8 - 

Point 15 

Point 16 

ER9 - 

Point 17 

Point 18 

ERlO 

Point 19 

Point 20 

F = 
P 

0.2416280 

xp = 0.4737107 

FL = 0.0476190 

XL = 0.0222136 

"b = 0.4617544 

“b = 0.2378141 

“b = 0.4787572 

‘i = 0.2432362 

F = 
P 

0.2866440 

Xp = 0.6141061 

FL = 0.0476190 

XL = 0.0222136 

"A = 0.6053393 

'k = 0.2837837 

“b = 0.6184753 

‘L = 0.2880740 

F = 
P 

0.3301360 

Xp = 0.7412511 

FL = 0.0476190 

XL = 0.0222136 

“i = 0.7353728 

‘d = 0.3280075 

xd = 0.7435889 

‘d = 0.3309868 

F = 0.3725390 
P 

Xp = 0.8480444 

FL = 0.0476190 

XL = 0.0222136 

X’ = 
P 

0.8445922 

F' = 
P 

0.3710155 

xP 
' = 0.8487120 

F' = 
P 

0.3728352 

Fp = 0.4166480 

X = P 0.9329834 

FL = 0.0476190 

XL = 0.0222136 

' = 0.9314609 
xP 
F' = 

P 
0.4156840 

' = 0.9329897 
xP 
F; = 0.4166520 

FS = 0.3860150 

Xs = 0.8771566 

FR = 0.4672619 

xH = 0.9894592 

X' = s 0.8743659 

F' = 5 0.3846684 

X’ = 0.8865011 s 

F' = s 0.3906229 

F* = 0.4257060 

xs = 0.9465058 

FR = 0.4732143 

XII = 0.9929355 

X' = s 0.9452905 

F' = s 0.4248510 

"A = 0.9532399 

F' = s 0.4306204 

FS = 0.4605160 

x9 = 0.9846922 

FR = 0.4821429 

xH = 0.9968561 

x5 = 0.9843444 

Fi = 0.4600677 

Xi = 0.9877977 

Fi = 0.4647663 

Fs = 0.4869850 

Xs = 0.9983291 

FR = 0.4910714 

XH = 0.9992134 

xi = 0.9982912 

F; = 0.4868379 

Xi = 0.9991150 

F: = 0.4905293 

Fs = 0.4991710 

xs = 0.9999932 

FR = 0.4991710 

XH = 0.9999932 

Xi = 0.9999931 

Fz = 0.4991617 

X,' = 1.0 

F,' = 0.5 
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Fig. 6. The positions and motions of the zeros of the filters of Fig. 4, 
as a function of passband cutoff frequency. 

the curve beyond the linear scaling of Fig. 3(c), where the 
first extremum has been scaled to x = 0. The mapping mech- 
anism below x = 0 is similar to that described above beyond 
x= 1. 

Although this explanation accounts for the behavior of the 
. optimal solution in the gaps between scaled extraripple filters, 

numerical solutions are no easier to obtain in this manner than 
by direct solution of the discrete Chebyshev approximation 
problem with the appropriate parameters. 

It is interesting to consider the positions of the zeros of the 
optimal filters as a function of Fp . Fig. 6 shows a sequence of 
plots of the positions of the zeros at points ERl, 2, ER2, 4, 
ER3 of Fig. 4. For this case N = 11, so there are 10 zeros in 
the z-plane. 

For filters with F,, less than or equal to the passband cutoff 
of the first extraripple filter, there are five complex conjugate 
pairs of zeros, all on the unit circle as seen in Fig. 6(a). The 
heavy lines in Fig. 6(a) show the movement of one pair of 
zeros as Fp is increased. The pair of zeros closest to z = - 1 
move along the unit circle to form a double zero at z = - 1. For 
the filter corresponding to this point, both the frequency re- 
sponse and its derivative are zero at f = 0.5. In terms of scaling 
extraripple filter 1, the point Xz of Fig. 2(a) (where P(Xz) = 
0) between the last and next to last extrema is scaled to x’ = 1 
orf=OS. 

As Fp is increased to point 2 on Fig. 4, the zeros move to 
the positions indicated in Fig. 6(b). The zeros closest to z = - 1 
are now a real pair of mirror-image zeros on the negative real 
axis in the z-plane. The heavy lines in Fig. 6(b) show the move- 

ment of the pair of real zeros as Fp increases. The real zeros 
split further apart until one is at z = -m and the other is at 
z = 0. This case corresponds to an extraripple filter of length 
9, as discussed elsewhere [7] . 

As Fp increases, the real zeros come closer together on the 
positive real axis until the situation of Fig. 6(c), corresponding 
to filter ER2, is reached. As shown by the heavy lines in Fig. 
6(c), at this point, as Fp increases the pair of zeros on the 
unit circle closest to z = - 1 begin moving along the unit circle 
to z = - 1 at which point they split up and drift apart along the 
negative real axis. Fig. 6(d) shows the position of the zeros at 
the point 4 in Fig. 4. There are now 4 zeros on the real axis. 

Further increases in Fp move the zeros on the negative real 
axis further apart until one is at z = 0 and the other is at z = --OO 
corresponding to another N = 9 extraripple filter. These zeros 
then come back together along the positive real axis until they 
merge with the other pair of zeros on the positive real axis and 
split apart to form a quadruplet with the required complex 
conjugate and mirror-image symmetry. This situation is illus- 
trated in Fig. 6(e) which shows the positions of the zeros at 
ER3 in Fig. 4. 

Much the same behavior of the zeros is obtained as Fp in- 
creases even further. The zeros closest to z = - 1 on the unit 
circle merge at z = - 1, split apart along the negative real axis, 
and return along the positive real axis to form either a real 
pair of zeros or merge with another real pair of zeros to form 
a quadruplet of zeros. 

In terms of the motion of the zeros, it is easy to understand 
the equivalence between extraripple filters of length (N- 2) 
samples and optimal (not extraripple) filters of length N sam- 
ples. Furthermore, the movement of zeros off the unit circle 
(’ I.e., stopband zeros) to become either complex quadruplet 
zeros or real axis zeros (i.e., passband zeros) is readily under- 
stood from the above discussion. 

SUMMARY 

This paper has discussed how the set of (N - 1)/2 extraripple 
filters may be scaled (within some specified bounds) to yield 
an infinite number of optimal filters with new passband and 
stopband cutoff frequencies. Examples were given to illustrate 
the effects in specific cases. A detailed study of the movement 
of the filter zeros, as a function of passband cutoff frequency, 
provided a reasonable explanation for several noted properties 
of optimal filters. 
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Analog and Digital Filtering in Multiplex 
Communication Systems 

CARL F. KURTH 

Abstruct-The design and realization of filters in communication 
systems have been influenced by various technologies over the past 
years. Beyond the traditional LC-filter technology, a sophisticated 
crystal-filter and, more recently, a mechanical-filter technology have 
been developed. Each filter technology is applied in multiplex com- 
munication systems according to its inherent technical and economical 
advantages. 

With the economical acceptability of integrated circuits, two more 
filter technologies begin to compete with the established filter concepts. 
Active filters in thin-film realization show promising aspects for cer- 
tam applications and for mass production. Digital-filter techniques 
seem to be’understood well enough that it is worth looking for their 
application in multiplex systems. 

The various filter techniques, new and old, are set into the perspective 
of their economical use in multiplex communication systems. 

I N MODERN communication technology, for economic rea- 
sons, every effort is being made to use only one pair of 

wires or one wide-band communication link for simultaneous 
transmission of many individual channels. This necessitates 
the construction of multiplex systems in which the signals of 
individual channels are processed to appear as a combined 
signal at the output terminal of those systems. 

These multiplex communication systems are based on a 
hierarchy, which means that a smaller number of channels on 
separate wires is combined into a group of channels on one 
wire. This is continued in further steps by combining several 
groups of channels into a higher order group until the necessary 
number of channels is combined at the output terminal of a 
system. This process is indicated in Fig. 1. Each individual 
combination is accomplished by a modulation step which 
interleaves the channels in the frequency or in the time domain 
without interference. According to the two different methods 
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Fig. 1. Hierarchy of multiplex communication system. 

of interleaving, two different hierarchies exist, which are 
referred to as frequency division multiplexing (FDM) and time 
division multiplexing (TDM) [l] . 

FREQUENCY DIVISION MULTIPLEXING 

FDM is based on amplitude modulation and consecutive 
linear filtering of one sideband which is used for further 
transmission. Consequently, this is the area where continuous 
filters are needed. According to the particular level in the 
hierarchy the requirements on bandwidth and attenuation of 
the filters vary [2] -[7]. As indicated in Fig. 2, the filters in 
higher modulation steps have a large bandwidth; however, the 
requirements on the attenuation are less stringent since un- 
wanted modulation products are further away from the pass- 
band. The filters with the most stringent requirements on 
selectivity follow the first modulation step necessary to gen- 
erate the single sideband signal for each individual channel. In 
modern FDM communication systems the channels are stag- 
gered over the frequency band in 4-kHz slots; thus the individ- 
ual channel filters have relatively steep attenuation slopes as 
indicated in Fig. 3 [4], [8], [ 1 l] _ Within each 4-kHz slot a 
bandwidth of 3.2 kHz is used for transmission. One of these 


