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ABSTRACT

A new approach for designing a set of acoustic models for speech
recognition applications which results in minimum empirical error rate for
a given decoder and training data is studied. In an evaluation of the
system for an isolated word recognition task, hidden Markov models
(HMM’'s) are used to characterise the probability density functions of the
acoustic signals from the different words in the vocabulary. Decoding is
performed by applying the maximum a-posteriori decision rule to the
acoustic models. The HMM’s are estimated by minimizing a
differentiable cost function, which approximates the empirical error rate
function, using the steepest descent method. The HMM’s designed by the
minimum emprical error rate approach were used in multispeaker
recognition of the English E-set words and compared to models designed
by the standard maximum likelihood estimation approach. The proposed
approach increased recognition accuracy from 68.2% to 76.2% on the
training set and from 53.4% to 56.4% on an independent set of test data.

L. INTRODUCTION

Isolated word speech recognition could optimally be performed if the true
probability of all words in the vocabulary were known, as well as the
corresponding probability distributions (PD’s) of the acoustic signal. In
such a case the recognizer is a maximum a-posteriori (MAP) classifier
which is optimal in the sense of minimizing the probability of error. The
recognized word, selected from all possible words in the vocabulary, is
chosen as the word with the highest joint probability with the acoustic
input signal. In practice, however, word probabilities and acoustic signal
PD’s are not known and we can therefore only design suboptimal
classifiers.

The traditional approach to this problem in speech recognition is to
estimate the unknown word probabilities and the PD’s of the acoustic
signal from training data. Word data sets and acoustic signals are used
respectively. These word probabilities and the PD’s of the acoustic signal
are consequently assumed to be the true word probabilities and PD’s of
the acoustic signal. The optimal MAP decoder is then applied to perform
classification. The estimation of both word probabilities and PD’s of the
acoustic signal is most often based on some parametric model. The
parameter sets of these models are estimated from the word and acoustic
signal training sequences. The model assumed for the probability of the
word occurrence is referred to as the word model and the model assumed
for the acoustic signal is called the acoustic model. Unfortunately this
creates the problem of choosing a model with the same statistics as the
sources that generated the training sequences used to estimate the model
parameters. This is generally not the case and the parameter estimation
problem becomes a problem in source modeling by parametric models.

The acoustic model for a given word is usually chosen to be a Markov
source, or a hidden Markov model (HMM) [1}-[3]. Similarly, the word or
language model is also chosen to be Markovian [4]. The estimation of the
parameter sets of the HMM's for the acoustic signals is usually performed
by the maximum likelihood (ML) estimation approach [5]-[7]. An ML
estimate results from local maximization of the likelihood function of the
HMM for a given training sequence of speech signal. This statistical
inference approach is chosen for two major reasons. First, there exists an
efficient algorithm, the Baum algorithm [5]-[7], for performing the
modeling. Second, under a model correctness ption which impli

that the acoustic signal is a Markov source, and some other mild
assumptions, the ML estimator of the parameter set of the model is
asymptotically efficient [8, Theorem 3.4]. Hence, one can intuitively argue
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that using the ML estimates of the acoustic models and the MAP decision
rule can lead to a speech recognition system which is asymptotically
optimal [9].

Recently a new approach for estimating the parameters of HMM's by
maximizing the empirical mutual information between the acoustic signal
and the corresponding word was proposed [10]-[11]. The maximization is
performed using general optimization procedures, e.g., the steepest-
descent method. HMM’s designed by this approach were experimentally
demonstrated to perform better than models designed by the ML
estimation approach in speech recognition applications [11]. Nevertheless,
since neither the likelihood nor the mutual information is directly related
to the probability of classification error, HMM's designed by these
approaches are not guaranteed to yield minimum error rate even for the
given training data.

In this paper we focus on the problem of estimation of the parameters of
the HMM’s for the acoustic signals by minimizing the empirical error rate
of the recognizer for the MAP decoder and a given set of training data
[12]. We develop an algorithm for performing the estimation and study its
performance in multi-speaker recognition of isolated versions of the
English E-set words. The acoustic models are simultaneously estimated by
minimizing a differentiable function which approximates the empirical
error rate function. The minimization is performed using the steepest
descent method. The cost function used in this approach is shown to be
fundamentally different from the cost functions employed by the ML and
the MMI approaches for hidden Markov modeling.

In section 2 we derive the algorithm for the minimum empirical error rate
design of HMM parameters and compare this approach with the MMI
approach. In Section 3 we discuss experimental recognition results and
compare the proposed approach with the ML estimation approach.
Comments are given in Section 4.

1II. HMM DESIGN FOR MINIMUM EMPIRICAL
ERROR RATE

Let Y be a random variable defined on the sample space, say Y, of all
acoustic signals corresponding to the words in the vocabulary. Let
y={y,, t=1 ,~, T}, where y,eRX, the K—dimensional Euclidean space,
be a realization of Y. For simplicity of notation, we assume throughout
this paper that all acoustic signals have the same duration T. Let
Me{l ,~, L} be a discrete random variable representing the words in a
vocabulary of size L. Let Py|, and Py be, respectively, the PD’s of
parametric models for the acoustic signal for a given word, and for the
word. The parameter set of Py) -, here the HMM for the m—th word,
will be denoted by A,,. The parameter set of the word model Py, will be
denoted by p. We shall assume that Y is a discrete space and use lower
case letters to denote probability density functions (pmf’s). Thus, p(y | m)
and p(m) will denote the pmf’s corresponding t0 Pyjy and Py,
respectively.

The problem of designing a speech recognition system for an L word
vocabulary is that of estimating the L acoustic models and the word
model from a given set of training data. In this paper we shall mainly be
concerned with the estimation of the acoustic models. Whenever
necessary, we shall assume a-priori knowledge of the word model Py,.
We assume that training data consisting of a labeled set of N pairs of
words and acoustic signals is available. In particular, this training data is
denoted by {(w,,yr(n), n=1,-, N}, where w,e{l ,, L} and yp(n)eY
for all n=1 ,-~, N. Furthermore, for meaningful estimation of the models,
we assume that N>L.

We now derive the proposed approach for hidden Matkov modeling and
compare it with the MMI and ML modeling approaches. Let wy,(m)
denote the set of all acoustic signals yeY to be decoded as the m~th
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word, where decoding is performed using the acoustic and word models,
A and y, respectively. For MAP decoding we have

PO mp(m) 1= L
It 5 ), , m=1, L (1
G 1 Dp() l#m o
where we arbitrarily assign y to the set of the lowest index when ties

occur. The set {w, ,(m), m=L,--, L} constitutes a partition of Y. Let
q (y,m) denote the true joint pmf of the acoustic signal and word. The

 y(m) =y

probability of classification error associated with the partition
{oru(m), m=1 ,~, L} is given by
L
POW =1-FT T q'Gm
m=1 yea, ,(m)
L
= 1= 3 T lom®e 0 ®
m=1 yeY

where 1%“(,,.)(_\») denotes the characteristic function of the set Wy y(m),
1 yew, y(m)

Loy om@) = 3

0 otherwise

The empirical error rate is obtained by replacing the unknown pmf
q (y,m) in (2) by the sample distribution estimate g (y,m) obtained from
the given training data {(w,,yr(n)), n=1,, N}. This estimate is given
by
L v
q0.m) = 5 L8O -yr(n).m-w,). @
n=l1

From (2) and (4) we obtain the following empirical classification error
rate function,

~ L
P,(\.p) = 1—%2 T Lo,emOr(n).

m=1n:w,=m

)

This function constitutes the average number of utterances from the
training data which were misclassified by the MAP decoder for a given
set of acoustic and word models. Minimum error rate on the training data
can therefore be achieved by minimizing (5) over {A,u}. In practice, a
differentiable approximation of (5) is minimized using steepest descent
methods. We use the following approximation of Loy ),

Loy o) = 29 Lrp (m)
2pW | Dp®)
1=1

and perform the minimization of (5) over A. For initial parameter set A
estimated by the ML approach, p(y | m)>p (y | I), l#m if y is an acoustic
signal from the m—th word, and p(y|[)»p(y|m) for some I#m,
otherwise. Hence, the right hand side of (6) approximates lﬁ,m(,,,,(y) very
well. As is easy to see, this approximation is a differentiable function
provided that {p(y |I), I=1 ,--, L} are differentiable. On substituting (6)
into (5) we obtain the cost function used for estimating the acoustic
models in the minimum empirical error rate HMM design approach.

p(yr(n) | m)p (m)
S

(6)

n L
Pow=1-13 T )
mEE S p(yr(n) | Dp()
=1
For equally likely words, ie., p(m)=1/L, we have
. L
Pow=1-Ly g por@wlm ®

m=1n:wy=m Spr(n) | 1)
=1

It is interesting at this point to compare the approximate empirical error
rate function (8) with the cost function associated with the MMI modeling
approach [10]-[11]. Let /(Y ;M) be the mutual information between the
two random variables Y and M.

L .
+ m
1M =% Tq'ominL0lm
=Y PN ATNG]
i=1

where ¢*(y | m) and q"(m) are the true pmf’s of Y given M and of M,

respectively. In the MMI modeling approach, the pmf’s in the argument

of the information measure (i.e., the argument of the logarithm function)

are replaced by the pmf’s of the parametric models, and the expected

value involved in (9) is calculated with respect to the empirical

distribution estimate (4) of ¢ (y,m). This results in the following cost
function

9
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R L '
i = =3 P lm
mEE Y rin) | Dp (D)
1=1
- (n) | m)
= ST 11 pornlm 10

m=\n:w,=m Zp(yr(n) ' l)p(l)

=1

which is maximized over A using the steepest-descent approach. For
equally likely words, we have that

- 1L p(yr(n) | m)
Iv:M) = N + Zin[T 1 R el

m=1n:wy=m Tp(p(n) D
I=1

(n

Comparing (8) and (11) shows that the two approaches use exactly the
same  statistics, p(yr(n) | m)/ XX p(vr(n) |1, but in a completely
different manner. In the mim‘mum=1empirical error rate design approach,
the sum of these statistics is maximized over A, while in the MMI
approach the product of these statistics is maximized. From (11), the

cost function is dominanted by the smallest term in
{pOr(m) | m) TE pGip(n) [ 1), n=1 -, N}, or by the least Favorable
utterance of acoubtic signals over all models! Hence, the MMI cost
function is likely to be insensitive to the parameters of the models A, and
hence an inappropriate cost function.

In the next section we study the performance of the proposed approach
tor model design by minimizing the empirical error rate and compare it
with that of the ML approach. In the latter approach, the parameter set of
the model for the acoustic signal from each word is designed from the
training data corresponding to that word. The estimation is performed by

max ¥ 1np(yr(n) | m), (12)

where local maximization is performed using the Baum algorithm [5]-(7).
The minimization of (8), or equivalently, the maximization of the
empirical correct decision rate given by
2 1k pGr(n) [ m)
P.(A) = v X X
m=1n:wy=m ZP()’T(") | n
1=1
was performed using the steepest-descent method. The approximate
gradient of P()\) with respect to A was calculated as follows

(13)

A L Vap (¥
V\P.(\) = % > LxP( r(n) | m) (14)
m=1n:wp=m Sp(Tr(n) | 1)
i=1 L
L L pXr(m) | Vs TpXe(n) | 1)
=1
o TpFr(n) | 1)
I=1
which can turther be reduced to the following approximation,
R L
NEME LT T Vaplrn|m (1s)
m=1n:wy=m
L

Tp(¥r(m) | 1) = p(Tr(n) | m)

1=l

r i
{zp(YT(n) | I)JL

1=1
L pGyr(n) | mWVyp(r(n) | 1)

7 I
=i wammi=] {Zp(YT(’I) | I)JL
I=1

Both likelihoods and their gradients with respect to model parameters can
efficiently be estimated using forward and backward probabilities, (i)
and B,(j), respectively. They can be calculated recursively, after Baum
[6], for L <t <T,

() = [Ea,_x(i)a;,] &) (16)
i=l
and for T-12¢21,

Bi) = Xaibi( B G- an
i=1



We can then efficiently evaluate the likelihood function,
" on

pm) =3 T e i)a;bi(v B ().
i=lj=1

The models selected for the experiments are HMM's with Gaussian
mixtures of the form

(18)

m
by = TN My, Up). (19)
k=1

HMM '’s consist of a set of n states and they are defined by state transition
probabilities, a;;, 1 <4i,j<n, mixture weights, cj, observation means,
Py, and observation variances, uy, | <j<n, l<k<m, 1<l<d,
where each observation vector is a d-dimensional vector of spectral
components.

The experiments described below only considered a subset of the HMM
parameters in order to most efficiently demonstrate the properties of the
MEE approach. Only the state transition matrix, mixture weights and the
mean values have been reestimated in the gradient search. That was
achieved by estimating the gradients of the likelihood function with
respect (o these parameters, which can be performed efficiently using the
forward and backward probabilities,

3 T-1
5 —(P)= T ()b (0 )Bisi ()

2
aaij =1 €0
p) B ob; L T-ta b .
3 77 {5 e \ o+ 5 Zaomz |, b0} @
p) _ b; LA ob; .
T P)y= {51, e |0, Bi() + E{ El a:(l)ai,‘yn/_h ‘0,,. Bm(])]- (22)

We can thus obtain the gradients of the objective function used in the
gradient search, which is the approximation of the probability of correct
classification on the training data.

1. APPLICATION OF THE MEE APPROACH

The MEE approach was applied to recognition of isolated spoken
utterances of the English E-set words (ie. B, C, D, E, G, P, T, V, Z)
recorded using a conventional telephone bandset over local telephone
lines. The database used in the first two experiments consisted of
utterances spoken by two male and two female speakers. In the first
experiment, training of a set of multi-speaker models was performed
using five utterances spoken by each male speaker and seven utterances
spoken by the female speakers, for each word in the vocabulary. Testing
was performed using ten utterances from each speaker (ie. 360 test
tokens). In the second experiment, the testing and training data were
reversed, allowing us to evaluate the effects of increasing the amount of
training data on the performance of the MEE approach.

In the third experiment, a considerably larger database of speakers was
used. The training data consisted of one repetition of each vocabulary
word by fifty male and fifty female speakers. The testing data consisted
of the same number of ufterances, spoken by the same speakers at a
different time., Again a set of multi-speaker word HMM’s were created
for each of the nine words in the E-set.

The speech signal in these experiments was first sampled at a 6667 Hz
rate and analyzed using a sliding window. In the first two experiments a
30ms analysis window and a 10ms window shift were used. In the third
experiment a 45ms analysis window with a shift of 15ms was used. For
each vector y,, corresponding to the analysis window centered at time t,
the resulting spectral vector, S(o,), was represented using d =12
cepstral coefficients, in the first two experiments, and d = 10 coefficients
in the third experiment. The cepstral coefficients were computed from the
linear prediction parameters of v, and they were liftered using a standard
bandpass lifter [13]. A set of d additional parameters were obtained by
evaluating the differential cepstral coefficients (called the delta cepstral
coefficients), AC,, which contain important information about the
temporal rate of change of the cepstrum [14]. The combined cepstral and
delta cepstral vectors form a set of observation vectors, O,, which were
used in the first two experiments described below. (Each observation
vector consisted of d =24 parameters in the first two experiments and
d = 20 parameters in the third experiment.)

In all three experiments the HMM's had identical structure. For each
word in the vocabulary a five state left-to-right HMM with two Gaussian
mixture components per state was used. The covariance matrix of all
Gaussian pdf's was assumed diagonal.

The steepest descent method was initialized using a set of HMM'’s
estimated by the Baum algorithm ([6]. The Baum algorithm was
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initialized by splitting each isolated utterance in the training data into five
segments of equal duration, whose sample means and variances were used
as a coarse initial estimate for the model parameters. The Baum
reestimation was then iterated until the likelihood function reached a local
maximum. The acoustic models obtained by the Baum algorithm were
also used for defining the baseline performance (of an ML system) for
comparison with the performance of the models obtained by the MEE
estimation procedure.

The gradient search optimization of the linearly constrained nonlinear
function, P.(A), was performed using the optimization package, Modular
In-Core Nonlinear Optimization System (MINOS), developed at Stanford
University [15]. It solves this class of problems using a reduced-gradient
algorithm [16] in conjunction with a quasi-Newton algorithm [17]. The
implementation follows that described in Murtagh and Sunders [18].

The gradient search procedure provided intermediate acoustic models each
iteration. These intermediate models were used in a series of recognition
experiments to see how the performance on both the test data and the
training data changed with each iteration.

The results obtained in Experiment | for the smallest training set are
shown in Table 1.

EXPERIMENT 1
ML MEE
trairung data_ | test data || training data | test data
log likelthood 207847 315454 202 312173
P.(A) 0.945 0.991
accuracy (%) 94.4 73.6 99.1 70.0

Table 1. Results based on training on the small data set and testing on

the medium size data set.

The recognition performance on the training data is very good, but the
recognition performance on the test data is relatively poor. This result is
probably due to insufficient training data. This type of behavior (ie.
excellent performance on training data, poor performance on test data)
occurred for all iterations of the gradient search estimation procedure.
Thus, in spite of the improved accuracy on the training data obtained
using the MEE approach, the resulting models did not improve the
accuracy on the test data, but instead slightly reduced it.

In the second experiment the training was performed using the larger data
set which was previously used as test data. This provided a more
balanced result, where the differences in accuracy on the training and the
testing data were reduced somewhat. The increase in the amount of the
training data provided better word models enabling the MEE approach to
improve the accuracy on the test data as well as on the training data, as
shown in Table 2.

EXPERIMENT 2
ML MEE
training data | test data || training data_| fest data
log Tikelihood 343798 192135 338330 184899
P_(A) 0.925 0.975
accuracy (%) 9235 75.0 97.0 76.9

Table 2. Results based on training on the medium size data set and

testing on the small data set, obtained after 85 iterations.

The highest accuracy on the test data was not achieved with the same set
of models that had highest accuracy on the training data.
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Figure 1. Objective function and recognition accuracy on the training

data in Experiment 2.



To illustrate this point, Figure 1 shows the value of the objective
function, and the resulting training set recognition accuracy as a function
of the iteration number in the model design procedure. An excellent
match between the value of the objective function, P.(L), and the true
probability of correct classification can be seen in the figure. A plot of the
recognition accuracy on the test data, as a function of the iteration number
in the model design procedure, can be seen in Figure 2.
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Figure 2. Recognition accuracy on the test data at different stages

during the gradient search estimation in Experimeat 2.

The recognition accuracy first increases from the ML score until a peak is
reached at 76.9%. Then the accuracy starts dropping until it reaches the
same value as obtained with the ML estimation set of models. (The
gradient search estimation was then terminated.) It can also be seen from
Tables 1 and 2 that MEE estimation results in a lower likelihood score
since it attempts to maximize recognition accuracy without any explicit
concern for the change in the likelihood function.

The results obtained from the third experiment performed on the much
larger set of talkers are shown in Table 3.

EXPERIMENT 3
ML MEE
traming data | test dafa || “training data [ fest dafa
log likelihood 906786 | 903410 902169 896058
P.(A) 0.681 | 0.755
accuracy (%) 68.2 | 534 75.0 56.4
Table 3.  Results based on training and testing on the largest data set,

obtained after 90 iterations.

The differences in performance on the training and the test data are
somewhat smaller than in the previous experiments with the reduction in
the error rate on the test data after performing MEE reestimation (3%)
being about half the reduction in the error rate on the training data (7%).
The differences between the value of the objective function and the actual
word recognition accuracy on the training data, as shown in Figure 3, are
more pronounced here because of the lower accuracy of the recognizer.
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Figure 3. Objective function and recognition accuracy on the training

data in Experiment 3

Figure 4 shows the resulting accuracy on the test data as a function of the
iteration number during the gradient search.

The accuracy on the test set is highly non-monotonic with the iteration
number; hence in order to achieve the best recognition results, careful
monitoring of performance during the steepest descent estimation is
required. (This may not always be practical in actual implementations.)
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during the gradient search estimation in Experiment 3.

Figure 4.

IV. CONCLUSIONS

A new technique for estimating HMM parameters based on minimizing
empirical error rate has been proposed and studied. The MEE approach is
more directly related to the goal of reducing classification error rate than
other approaches currently used for estimating model parameters. It is
1mplememed using steepest descent esumauan by minimizing a
recogmnon accuracy on the training data. An increase in accuracy on the
training data does not guarantee an 1mprovement in recognition rate on an
independent set of test data. The experiments described here show that it
is necessary to have a large amount of training data to adequately
characterize the source and thus make the MEE approach usable. When
sufficient training data is available, the MEE approach was shown to be
capable of reducing the error rate on both training and test data as
compared to the error rate of the ML training approach.
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