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Techniques for Designing Finite-Duration 
Impulse-Response Digital Filters 

LAWRENCE R. RABINER, MEMBER, IEEE 

Abslract-Several new  techniques for designing finite-duration 
impulse-response digital filters have  become available in the past 
few  years.  The motivation  behind  three design  techniques that 
have  been proposed are  reviewed  here, and the  resulting  designs 
are  compared  with respect to filter  characteristics, ease of design, 
and methods of realization. The  design  techniques to be  discussed 
include window,  frequency-sampling,  and  equiripple designs. 

I. INTRODUCTION 

I NTEREST  in design techniques  for  finite-duration  im- 
pulse-response (FIR) digital  filters  has been renewed 

in the  past few years because of the application of power- 
ful  optimizat,ion  algorithms to the design problem. Al- 
though closed-form solutions to  the  approximat,ion  prob- 
lem  cannot,, in general, be obtained explicitly, iterative 
techniques  can be made  to yield optimum solut,ions. Two 
optimization  techniques  have been proposed  recently [1]- 
[4] which, along wit.h t.he classical window design  method 
[5], [SI, provide  t.he  user  with  several  possibilities  for 
approximating  filters  wit'h  arbitrary  frequency-response 
characterist,ics. In  this  paper we  will discuss  t'he  general 
theory  behind  windowing  and  two  optimization  tech- 
niques-frequency-sampling and equiripple designs-and 
then  compare these  methods  with  respect  to  several 
practical and theoretical  criteria. 

11. TERMINOLOGY 

Before  discussing the design issues, it is import.ant  to 
distinguish the  various t,ypes of digital  filters that  can  be 
designed and to separate t,he  way in which a filter  is  real- 
ized from  t,he  filter  characteristics  themselves. The follow- 
ing  terms will  be used throughout  this paper. 

1)  Finite-duration  i,mpulse-response ( F I R )  : This  term 
means that  the  durat,ion of the filter  impulse response h, 
is finite;  i.e., 

h , = 0 ,  n > N 1 <  CD 

h, = 0, n < N z  > ---a, (1) 

and 

N1 > Nz. 

2 )  Infinite-duration imnpulse-response ( I I R )  : This  term 
means that t.he duration of the filter  impulse response h, 
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is infinite; i.e., there exists  no  finite  values of either Nl or 
N ,  such that (1) is satisfied. 

3) Recursive  realization: This  term describes the  way 
a filter (either  IIR  or  FIR) is realized. It means that 
the  current filter output y ,  is obtained  explicitly in  terms 
of past filter outputs yn-l, - . as well as  in  terms of past 
and present  filter inputs xnrxn-l, - - -. Thus t,he output 
of a recursive  realization can  be  written  as 

yn = F (yn-l,Yn-z, - * , ~ n , ~ n - l ,  9 * 1. (2) 

4) Nonrecursive  realization: This  term  means  that  the 
current filter output yn  is obtained  explicitly  in terms of 
only  past  and  present  inputs; i.e.,  previous  outputs  are 
not used to generate t.he current  output.  The representa- 
tion  on a  nonrecursive  realization  can be written  as 

yn = F (G,z,-I, * * 1. (3) 

The mot,ivat,ion  behind this  terminology is t,hat  it  has 
been shown [7], [SI that  FIR filters as well as  IIR filters 
can be realized both  nonrecursively  and  recursively. ( I t  
should be noted that,  in general,  recursive  realizations 
of I IR filters and  nonrecursive  realizations of FIR filters 
are  most efficient and  are usually  used.) Thus a term 
describing  filter  characteristics  should be .distinct  from  a 
term describing how the filter is realized. This is not how 
the  terminology  has t,raditionally been used. 

111. SOME  ADVANTAGES OF FIR FILTERS 
Although  our  aim is t,o describe and  compare design 

techniques  for FIR filters, it is of interest  to first discuss 
some  reasons  why FIR filters are of importance.  These 
include the following. 

1) FIR filters  can  easily be designed to  approximate  a 
prescribed  magnitude  frequency response to  arbitrary 
accuracy  with  an  exactly  linear  phase  characteristic. I n  
addition, FIR filters  can  approximate arbitrary  frequency 
characteristics (both  magnitude  and  phase),  but I IR 
filters can also do  this. 

2) FIR filters  can be realized efficiently both nonre- 
cursively  (using direct convolution, or high-speed con- 
volution  by  using  the  fast  Fourier  transform  (FFT) [SI, 
[lo]) and recursively  (using a  comb  filter  and a bank of 
resonators [ll]) . 

3) An FIR filter realized nonrecursively is always  stable. 
FIR filters realized nonrecursively  contain  only zeros in 
the finite z plane, and  hence  are  always stable. 

4) Quantization  and roundoff problems  inherent  in re- 
cursive  realizations of I IR filters are generally negligible 
in  nonrecursive realizations of FIR filters. 



RABINER:  FINITE-DURATION  IMPULSE-RESPONSE DIGITAL FILTERS 189 

wn ..................... 
: 0. 

.. 

n- n- 

Fig. 1. Two examples of windows  and  their  Fourier  transforms. 

5) The coefficient accuracy  problems  inherent in  sharp 
cutoff I IR  filters  can often be  made less severe  for real- 
izat.ions of equally  sharp FIR filters. 

IV. THEORY OF DESIGK 

Since one of the most important reasons for  designing 
F IR  filters is that  they  can be designed wit.h an exactly 
linear  phase, we  will restrict  our discussion to  this  type. 
The general  characteristics of the frequency response of 
a  digital  filter whose impulse-response coefficients are real 
are 

H[kxp ( j w T ) ]  = H exp j o + n - T , [ [ (  3 1 1  
n = O,=t l , f2 , . . .   ( 4 )  

I HCexp ( j0T)1 I = I HCexp (-juT)I I ,  0 I u I T 
(5) 

e(O> = -e(+, O I O I T  

(6) 

HCexp ( 1 = I HCexp ( 1 I exp Cje(O> 1 (7) 

where 

where H[exp ( j w T ) ]  is the frequency response of t,he 
filter and T is the sampling period. Equat,ion (4) shows 
the periodicity of sampled-data  systems  in  frequency. 
Equations (5) and (6) show the  symmetry of the magni- 
tude  function  and  asymmetry of the phase  function  for 
filters  with  real  impulse responses. In  the remainder of 
this section we will discuss three  techniques  for  approxi- 
mating  the desired magnitude response characteristics, 
assuming  linear phase, with an  FIR filter. 

A .  Windowing 

Since the frequency response of a  digital  system is 
periodic, it can  be  expanded in a  Fourier series. The 
coefficients of this  Fourier series are  the filter impulse- 
response coefficients. Generally,  there are  an infinite  num- 
ber of nonzero Fourier-series coefficients. To obt.ain an 
F IR  filter which approximates the original  frequency re- 
sponse, the Fourier series must be  truncated.  Direct  trun- 

cation of the series, however, leads to  the well-known 
Gibbs  phenomenon, i.e., a fixed percentage  overshoot and 
ripple before and  after  an  approximated  discontinuity, 
making this technique  unsat,isfactory  for  approximating 
many  standard  types of filters. ,In order  to control the 
convergence of the  Fourier series a  weighting  function is 
used to modify the Fourier coefficients. This time-limited 
weighting function is called a window. Since the multipli- 
cation of Fourier coefficients by a window corresponds to 
convolving t'he original frequency response with the Fou- 
rier  transform of the window, a design criterion  for 
windows is to find a  finite window whose Fourier  trans- 
form has relatively  small sidelobes. Fig. 1 shows two 
choices of windows and  their respective  frequency re- 
sponses. The rectangular window at  the  top left corre- 
sponds to  direct  truncation of the Fourier series. The 
Fourier  transform of the rect.angular window, shown at 
the lower left,  has  a  narrow  center lobe, but has sidelobes 
which cont,ain  a large part of t.he total energy and which 
decay  quite slowly. Another window, the triangular win- 
dow, is shown in t,he upper  right of Pig. 1. I ts  Fourier 
transform, shown at   the lower right',  has  a  main  lobe 
twice the width of the rectangular window main lobe, 
but has  much less energy in  the sidelobes. 

The search  for windows to meet the criterion  previously 
mentioned, i.e., a  finite window with  most of its energy 
in  the  main lobe of its  Fourier  transform,  has led to sev- 
eral useful and  in some sense optimum designs. The 
Hamming window, which is of the form: 

N 
2 W ,  = 0.54 + 0.46 COS - I n < - -  (8) 

has 99.96 percent of its energy in  its  main lobe, with 
the peak  amplitude of the sidelobes down more than 40 
dB from the peak. The width of the main lobe is twice 
the width of the rectangular window's main lobe. The 
Blackman window, which is 

w, = 0.42 + 0.5 cos (7) + 0.08 cos (7) , 2?m 4 m  

- N  N - 5 n 5 -  (9) 
2  2 



further reduces peak sidelobe ripple to less than 0.0001 
of the main-lobe peak at  the expense of a  main  lobe whose 
width  is  triple  t,he  width of the rectangular window 
main lobe. Optimum window designs have been proposed 
by Kaiser [SI and Helms [SI. The  Kaiser window is an 
approximat.ion to t,he  prolate  spheroidal  wave  functions 
whose band-limiting  properties are well known [12]. By 
adjusting a parameter of the window, a tradeoff can  be 
obtained  between  peak sidelobe ripple and  the  width of 
the main lobe. The main  disadvantage oT these windows 
is that one must  compute Bessel functions  to  get  the 
window coefficients.' Helms [6] has proposed the Dolph- 
Chebyshev window, which is  optimum  in  the sense that 
the main-lobe widt.h is as small  as possible for a given 
peak ripple. The main  disadvantage of this window is 
that inverse  hyperbolic cosines must be  evaluated  to 
determine the window coefficients. 

One  disadvantage of the window design technique is 
that one must be  able to  compute Fourier-series coeffi- 
cients  for the periodic frequency response being approxi- 
mated. Generally it is  not  trivial  to  determine closed- 
form expressions for  these coefficients. The solution to 
this problem  is  found by  approximately  obtaining  the 
Fourier-series coefficients as  the discrete  Fourier  trans- 
form (DFT) of a  sampled version of the  continuous fre- 
quency response. By sampling the frequency response a t  
a  number of frequencies M much  larger than  the  number 
of Fourier-series coefficients under the window N ,  one can 
obtain fairly good approximations  to the first N Fourier 
coefficients. Fig. 2  presents a summary of the window 
design procedure. Fig. 2(a) shows the desired frequency 
response. Fig. 2(b) shows the same  frequency response 
sampled at  M equispaced frequencies, as well as  a con- 
t,inuous iriterpolat,ion in frequency.  Through the use of 
the DFT formula [Fig. 2(c)]  the M-point  impulse re- 
sponse h, is  obtained  and  is shown below the formula. 
An N-point window w, [Fig. 2(d)] with the Fourier 
t,ransform W(ejwT) [Fig. 2 (e)] weights the impulse re- 
sponse to yield the N-point  sequence a, [Fig. 2  (f) ]. The 
sequence a, is the filter  impulse response and  its  Fourier 
t,ransform [Fig. 2(g)] shows t.he final approximation  to 
t'he desired response. 

Frequency Sampling 

A second technique  for  approximating  a  filter  with given 
frequency-response specifications is to  sample  the de- 
sired  frequency response at  N equispaced frequencies, 
where N is the number of samples in  the filter  impulse 
response. By  setting these  frequency  samples  to  be the 
D F T  coefficients of the filter  impulse response, one can 
derive an approximation  to  any desired continuous fre- 
quency response. For  many  types of filters, such as low- 
pass,  bandpass, and high-pass filters, one can optimize the 
values of the frequency  samples  in  transition  bands to 

1 Kaiser  has a simple 12-line  Fortran 4 program  which computes 
a power-series expansion (up  to 25  terms) of the Bessel function 
IO(4. 

.I; . .  

0.0 ' * O r  

A(OlUT) = M(rjuT) 4 t  w(rju') 
(9) 

Fig. 2. Step by step realization of windowing. (a) Desired  fre- 
quency response. (b) Sampled frequency response, N << M .  
(c) Impulse response obtained using DFT. (d) Typical wmdow 

pulse response. (g) Frequency  response  corresponding to windowed 
functlon.  (e) Wlndow  frequency  response. ( f) Windowed  im- 

impulse response. 
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Fig. 3. Set of frequency-response specifications for  linear  phase 
filter. Solid curves show continuous  frequency response and 
heavy dots show frequency samples. 

opt,i~nize  the filter design. The resulting  filter designs will 
be shown to be quite efficient.. 

I n  Fig. 3 frequency-response specificat>ions for  a  desired 
filter  are  shown (the solid curves)  along  with the frequency 
samples of this filter (the  heavy  points).  The frequency 
samples are defined by  the relat'ion 

Hk = I H k  I exp ( j e k )  = H(2) I r = e x p  [ j ( 2 r / N ) k ] ,  

k = 0 , 1 , * . . , N  - 1 (10) 

where H(z) is the x transform of the  FIR filter. By using 
the inverse  discrete  Fourier  transform (IDFT),  we can 
determine the filter impulse-response coefficients h, in 
terms of the frequency  samples  as 

The x-transform relation gives 
N-1 

H(z) = h,z-" 
n=O 

( 1  - z - N )  N-1 c H k  - - 
N b=O 1 - x-' exp [ j ( Z ? / N ) k ]  

. (12 )  

Evaluation of ( 1 2 )  on the  unit circle gives the continuous 
interpolation  formula 

H[exp ( j w T )  ] = 
exp [ - j ( w N T / 2 )  ( 1  - l / N ) ]  

N 

- C  
b=0 sin ( w T / 2  - a k / N )  
N-l H k  exp [ - j ( ? r k / N ) ]  sin (wNTI2)  

(13) 
which can easily be  evaluated using the FFT algorithm. 

The basic ideas  behind  frequency  sampling can be  seen 
in ( 1 3 ) .  The filter  frequency response is seen to  be lin- 
early  related to  the frequency samples, and  thus  linear 
optimization  techniques  can  be used to  optimally select 
values of several, or all, the frequency  samples to give 
the best  approximation  to the desired filter. Furthermore, 

191 

the  interpolated frequency response is seen to consist of 
elementary  functions of t.he form: 

sin (wNTI2)  
sin ( w T / 2  - 0) 

which, in  the design of standard filters  such as a low-pass 
filter,  provide good ripple  cancellation.  Thus, by allowing 
variable  frequency  samples in a  transit'ion  band  between 
the in- and out-of-band regions, one can choose the fre- 
quency  samples in  this  band  to provide optimum ripple 
cancellation for  either  the out-of-band region, inband re- 
gion, or a  combinat,ion of the two. As the  number of  sam- 
ples in  the  transition  band increases, ever finer ripple can- 
cellation is possible. Fig. 4 shows an example of a low- 
pass  filter wit,h an impulse-response duration of 256 sam- 
ples, and 3 variable  frequency  samples  in the transition 
band.  Thirty-t.wo  inband  frequency  samples were s t  to 
1.0, and  the out-of-band samples set  to 0.0. An optimiza- 
t,ion program  determined the transition  samples  to mini- 
mize peak  out-of-band ripple. As seen in Fig. 4 (a), a  peak 
out-of-band ripple of -88 dB was obtained. An expanded 
view of t,he  frequency response of the filter is shown in 
Fig. 4 (b) . 

Fig.  5 shows a  frequency-sampling design for an ideal 
full-band differentiator. In  this figure the filter  impulse 
response (of 256-sample duration),  the  magnitude re- 
sponse, and  the  magnitude  error  are  plotted.  The peak 
magnitude  error is less t.han 0.1 percent (the average  error 
is considerably less than  this)  and  there is no phase  error 
a t  all. 

It should  be  noted t,hat  the  mathematical solution of 
the  optimization problem is straightforward because of 
the linearity of the frequency response with  respect to 
the unconstrained  variables. 

C. Equiripple Designs 

( 1 4 )  

A third technique for designing FIR filters solves a 
system of nonlinear  equations to  generate a  filter  with an 
equiripple  approximation  error [3 ] ,   [ 4 ] ,   [ 14 ] .  In  this 
method the unknown quantities  are  both  the ( N  + l ) / 2  
coefficients in t,he impulse response (assuming N odd, and 
a  symmetrical  impulse  response)  and  a  set of ( N  - 3 ) / 2  
frequencies a t  which ext,rema of the  approximation  error 
occur. By writing  const.raint  equations  on the extrema 
and  on  the  derivatives, a  system of ( N  - 1 )  nonlinear 
equations  in ( N  - 1 )  unknowns can be  obtained.  Stand- 
ard nonlinear  optimization  techniques  are used to solve 
t,hese equations. 

For simplicity, we assume the filter  impulse response 
h,, is symmetric  and exists  from n = - ( N  - 1 ) / 2  to 
n = ( N  - 1 ) / 2 ,  where N is odd. Thus  the filter  frequency 
response can  be  written  as 

(N-1) 12 

H[exp ( j w T ) ]  = h, exp ( -jwnT) 
n=-(N-1)/2 

(N-1)  12 

= ho + 2h, cos (wnT) . (15 )  
n-1 
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LOW PASS  FILTER  DESIGN 
TYPE I DATA 
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BW= 32 
M = 3  
N = 256 
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( 4  (b) 
Fig. 4. (a) Low-pass filter with three  transition samples and impulse-response duration of 256 samples, designed by 

frequency-sampling  techniques.  (b) Expanded view of filter frequency response. 

NONRECURSIVE D I F F E R E N T I A T O R S  

IMPULSE RESPONSE N =256 
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5. 256-point impulse response full-band differentiator de- 
signed by frequency-sampling technique. 
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Fig. 6.  (a) 41-point equiripple low-pass filter. (b)  Plot of 2-plane 
positions of zeros of filter. 
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Fig. 7. Comparison of filter designs in terms of normalized width 
of transition  band as  function of out-of-band  ripple 62. 

The derivat'ive of t.he frequency response can be evaluated 
as 

(N-1) /z 

H'Cexp ( j o T ) ]  = - 2h,-nT sin (wnT).  (16) 
n=l 

At each extremum of the approximation  error, an equa- 
tion  can  be  written  relating  the frequency response to  the 
desired value and  the allowed error, i.e., 

where Hd[exp ( j w T ) ]  is the desired value at   the frequency 
wZ, 6z is t,he allowable approximation  error, and oz is an 
unknown  frequency.  A second equation  can  be  written 
because the value of the frequency response at  frequency 

is an ext'remum of the error, i.e., 

N'Cexp ( j w l T ) ]  = 0. (18) 

A series of equations of the form of (17) and (18) can 
be solved using nonlinear  optimization  techniques  to give 
the filter coefficients and  the frequencies of the  extrema. 
Fig. 6 shows typical  results  for the design of a low-pass 
filter  with  equiripple  error both  inband  and out-of-band. 
The impulse-response duration is 41  samples long. The 
inband  ripple in t'his case is 0.01, and  the out-of-band 
ripple is or -80 dB.  Fig. 6(b) shows the z-plane 
positions of the zeros of this filter. The out-of-band zeros 
are all on  the  unit circle, and  the  inband zeros lie in 
quadrouplets. For each zero at  z = r exp ( j e ) ,  there  are 
corresponding zeros a t  z = r exp (-jt9), and z = 
( l / r )  exp ( , t j e ) .  .This geometric symmetry of the zeros, 
when they  are off the  unit circle, accounts  for the linear 
phase response which is  obtained. 

V. COMPARISON OF DESIGN TECHNIQUES 

There  are  many theoretical and  practical ways of com- 
paring  different filter-design techniques. In this section 
we will compare  t'he three  methods discussed in  terms 
of 1)  the  transition  bandwidth  for a standard low-pass 
filter, 2) the ease of design of new filters, and 3) the meth- 
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A. Transition  Bandwidth for Low-Pass Filters 

One of the most basic ways of comparing low-pass 
filters is to compare t.he width of the t.ransition band  for 
different  values of peak  out-of-band and  inband ripple. 
Fig. 7 shows a  comparison of this  type  for  the  Kaiser 
window, frequency  sampling, and equiripple designs. In  
this figure, the normalized width of the transition  band 
as a  function of the out-of-band ripple is plotted. The 
normalized  width of the  transition  band is defined as 
folloivs2 : 

D(81,62) = NT[FH(&,&)  - F L ( ~ I , & ) ]  (19) 

where 

FH(B1,&) upper cutoff frequency in Hz 
F~(61,62) lower cutoff frequency  in  Hz 
61 inband  peak  ripple 
6 2  out-of-band  pe&k ripple. 

In  this figure the  inband ripple 61 is shown as  an addi- 
tional  parameter of the curves. The upper  dashed  curve 
shows the results  for the Kaiser window, which, because 
of its time-limit'ing and band-limiting  properties, tends 
to  have  the smallest normalized bandwidth.  For  an  out- 
of-band ripple of -80 dB (& = the normalized 
bandwidth is 5.01, whereas for  a - 40 dB ripple ( 8 2  = lov2) 
t'he normalized bandwidth is about 2.22. For these data 
points t.he inband  peak  ripple 61 is equal  to 62.3 

The middle dashed  curve shows the results  for fre- 
quency-sampling designs. For  an out-of-band ripple of 
-86 dB,  the normalized 1vidt.h of the transit,ion  band is 
4, or about $ that of the Kaiser window. For values of 
6 2  of -66  and -46 dB,  t'he  transition  width decreases to 
3 and 2 for  these designs. The design tradeoff between 
t,he  Kaiser window and equiripple designs is t.he larger 
values of 61 for the  latter case versus the larger  value of 
transit.ion  width  for the former case. 

The lowest set of curves show the results  for equi- 
ripple designs for  various  values of ijl. Since equiripple 
designs are  optimum, i.e., they  have  the smallest  width 
of transition  band  for fixed 61, the  data for this case 
falls below the  data for  t,he other two cases. The percent- 
age difference  in normalized bandwidth  between equi- 
ripple designs and frequency-sampling designs, for fixed 
61, 6 2 ,  is only  about 30 percent.. Since the subopt,imal 
frequency-sampling designs are  not much less efficient 
t,han the optimal  equiripple designs, there  may be circum- 
stances  in which it is preferable to use the suboptimal 
design. We  shall discuss such cases in  the  next sect.ion. 

B. Ease of Design 

An important issue to  any filter designer or user is how 
easy it is to design a new filter to meet some particular 

less quantity, independent of.AJT. 
The multiplication by NT in (19) makes D(61,6z) a  dimension- 

tion  bandwidths  that  are  within  about 10 Dercent of the  transition 
Low-pass filter designs, using the Kaiser window, have transi- - 

ods of realization. bandwidth of optimum equiripple filters. * 
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specifications. For example, a user may desire an approxi- 
mation to a  frequency response which is  not one for which 
the coefficients have  already been precataloged. The fol- 
lowing issues then arise. 

1) What  types of filters  have been cataloged and  can 
be referenced readily? 

2) How easily can the design technique  be  applied  to 
arbitrary  magnitude  and  phase specifications? 

3) Can filters  with  long  impulse responses, i.e., large 
values of N ,  be designed to  obtain sufficient,ly sharp  tran- 
sition  ratios to meet the most  stringent of design specifi- 
cations? 

In  this section we shall  t,ry to answer  these  questions 
with  respcct to each of the three design techniques. 

Since the window design technique  is so stxaight,forward 
to apply t,here is no need to  catalog  a  large  set of reference 
desigk,  and hence this  has  not been done. The window 
technique is readily  amenable to approximating  any  set 
of filter specifications >vit'h no limitations  on  length of 
impulse response. The problems  inherent in  the window 
technique  are  the necessity to  have Fourier-series co- 
efficients of the desired periodic frequency response and 
t,he  computation  required for using optimum windows 
such  as the  Kaiser window or the Dolpli-Chebychev win- 
dow. The first  problem  is solved by the approximate pro- 
cedure  outlined in Fig. 2.  Programs for comput,ing Bessel 
functions  for the Kaiser window, or inverse  hyperbolic 
cosines for the Dolph-Chebychev window, are necessary. 
These  are  generally  available  as  library  subroutines  on 
most, computers. Thus  the window technique  tends to be 
relat'ively  easy to use in  the general design case. 

In  order to use the frequency-sampling  technique, the 
user must program the  linear  optimization  procedure, or 
use some  available optimizahion program and  adapt  it  to 
his specific needs. Once t,his has been accomplished, there 
is no problem designing filters  with arbitrary  magnitude 
and phase  characterist,ics, or with  any  length impulse re- 
sponse. The  linear  nature of the problem  guarantees con- 
vergence of the mathemat,ical  algorithms. For several 
standard filters there exists an extensive  cat'alog of fre- 
quency-sampling designs [2],  [13]. The  types of filters 
included are low-pass and  bandpass filters and wide-band 
(up to full-band)  differentiators. From  this cat,alog  one 
could apply simple frequency  transformations  to  obtain 
band-stop or high-pass filters [15]. 

In  order  to use t.he equiripple design techniques, the 
user  must  program the nonlinear  optimization  procedure, 
or use some available  routine and again adapt  it  to 'his 
needs. The procedure  can  only design equiripple  approxi- 
mat,ions to  the magnitude response (assuming  linear 
phase). It may be possible to modify it for  arbitrary  phase 
but  this  has  not been done. The optimization  technique 
used by  Herrmann  and Schuessler [SI, [4] was capable 
of obtaining  solutions  only  for  small  values of N (on  the 
order of 40). Recent work by  Herrmann [lS] and Hof- 
stetter et al. [14] have solved t.he mathematical  problems 
and filters  can  be designed with  large  values of N .  (A 

small cat.alog of equiripple designs for low-pass filters  is 
available  from H e ~ ~ m a n n . ~ )  

C. Realization of FIR Filters 

Any FIR  filter  can  be realized nonrecursively by  direct 
convolution or fast convolution, or recursively using a 
cascade of a  cpmb  filter and a  bank of parallel  resonators. 
To use a  nonrecursive  realization  requires the coefficients 
of the filter  impulse response h,. For direct  convolution 
bhe output yn is determined  explicitly  from the  inputs 
xn as 

N-1 

Y n  = hmxn-me ( 20) 
m=O 

For fast convolut.ion a block of output samples is obtained 
from  a block of input samples by  Fourier  transforming 
the input,,  multiplying  t,he  transform by  the Fourier  trans- 
form of the impulse response, and inverse  Fourier  trans- 
forming the product.  Details of this t.echnique are ex- 
plained in [SI, [lo]. 

The way in which an  FIR filter may be realized re- 
cursively is seen from (11). Instead of the impulse-response 
coefficients, the  DFT of the impulse response, or, as we 
have called t'hem, the frequency  samples,  can be used to 
realize the filter  as  a cascade of a comb filter (1 - z-") 
and a parallel  bank of complex resonators. The signifi- 
cance of t.his realizat,ion is that for frequency-sampling 
designs, in  many cases several, if not  the  majority, of the 
frequency  samples would be 0.0. Hence  t'his  realization 
can  be  much more efficient than nonrecursive  realizations. 
For filters designed by  the  other techniques,  all the  DFT 
coefficients will be nonzero, in general, and  this realiza- 
tion will be  much less efficient. Furthermore, for frequency- 
sampling designs where the majorit,y of the frequency 
samples are 0.0 or 1.0, the effects of quantization  are 
much less severe in  the recursive  realization than  in  the 
nonrecursive realizat.ion. 

VI. CONCLUSION 

As in  the design of I IR  digital filters, there  are now 
several  techniques  available  for designing F IR  filters. The 
choice of technique  depends  heavily on  the decision 
whether  to compromise accuracy of approximation,  ease 
of design, or a  method of realization  with  a fixed quanti- 
zation  accuracy. 
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