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Abstract—Algorithms for connected word recognition based on whole
word reference patterns have become increasingly sophisticated and
have been shown capable of achieving high recognition performance
for small or syntax-constrained, moderate size vocabularies in a
speaker trained mode. In particular, it has been demonstrated that for
a vocabulary of digits, in a speaker trained mode, very high string
accuracy is achievable using either hidden Markov models (HMM) or
templates as the digit reference patterns. In this paper we use an en-
hanced analysis feature set consisting of both instantaneous and tran-
sitional spectral information and test the HMM-based connected digit
recognizer in speaker trained, multispeaker, and speaker independent
modes. For the evaluation, we used both a 50 talker connected digit
database recorded over local, dialed-up telephone lines, and the Texas
Instruments, 225 adult talker, connected digits database which has been
widely distributed through the National Bureau of Standards. Using
these databases, the performance that was achieved was 0.35, 1.65,
and 1.75 percent string error rates for known length strings, for
speaker trained, multispeaker, and speaker independent modes, re-
spectively, and 0.78, 2.85, and 2.94 percent siring error rate for un-
known length strings of up to 7 digits in length for the 3 modes. Several
experiments were carried out to determine the best set of conditions
(e.g., training, recognition parameters, etc.) for recognition of digits.
The results, and the interpretation, of these experiments will be de-
scribed in this paper.

I. INTRODUCTION

HE problem of recognizing strings of connected dig-

its is crucial to a number of applications such as voice
dialing of telephone numbers, automatic data entry, credit
card entry, PIN (personal identification number) entry,
entry of access codes for transactions, etc. In the last sev-
eral years, several highly successful algorithms for recog-
nizing spoken connected word strings from word proto-
types have evolved [1]-[5]. These algorithms, all based
on statistical pattern recognition methods, have achieved
great success when applied to the problem of connected
digit recognition [5]-[7]. The reasons for this success are
twofold: namely, the fact that the recognition algorithms
are optimal in the sense that they find the string of digit
reference patterns that best (in some objective sense)
matches the spoken digit string, and the development of
highly successful training procedures which derive the
digit reference patterns from a training set of fluent, con-
nected, digit strings [5]-[9].
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Earlier investigations showed that when a reasonable
size training set was available for deriving the digit ref-
erence patterns, a fairly good recognizer could be imple-
mented using either hidden Markov model (HMM) or
template characterizations of the digits, with the HMM-
based system achieving somewhat higher performance
than the template based approach [7]. For such systems,
the highest performance scores were achieved in a speaker
trained mode (typical string accuracies of from 98 to 99
percent); however, performance was found to degrade se-
riously in either a multispeaker or a speaker independent
mode. Bush and Kopec found that by incorporating acous-
tic-phonetic knowledge into the recognizer, improved
performance on speaker independent, connected digit rec-
ognition resulted [5]. Their results, which used some
manual segmentation in order to bootstrap the training,
showed speaker independent, connected digit string ac-
curacies of from 96 to 97 percent.

In an effort to improve performance of the fully auto-
matic connected digit recognition algorithms, a major
change was made in the front end spectral analysis. The
analysis feature vector used for recognition, nominally an
extended cepstral vector derived from LPC analysis, was
augmented by the so-called delta cepstrum information
[101, [11]. (The delta cepstrum vector is the least squares
fit of the time derivative of each of the cepstral parame-
ters, defined over a finite time window.) The resulting
augmented analysis vector characterizes both the short-
time spectrum (via the cepstrum) and the short-time spec-
tral derivative (via the delta cepstrum). The motivation
behind this change was the observation that, by including
information about the time derivative of the cepstral vec-
tor, a more complete 2-dimensional (time and frequency)
spectral representation of the time-varying speech signal
is obtained, and the performance of a vector quantization
(VQ) based talker verification system improved dramati-
cally (error rate decreased by a factor of 2) [11].

The new analysis feature set was tested in the HMM-
based connected digit recognizer in speaker trained, mul-
tispeaker, and speaker independent modes, and was found
to effectively reduce the string error rates by factors of 2
or more, often with considerably less computation than
used previously [7]. In particular, digit string error rates
of 0.78, 2.85, and 2.94 percent were obtained for un-
known length (UL) strings of from 1 to 7 digits for speaker
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trained, multispeaker, and speaker independent tests, re-
spectively. Comparable rates for known length (KL)
strings were 0.35, 1.65, and 1.75 percent, respectively.

The organization of this paper is as follows. In Section
II we review the fundamentals of the HMM connected
digit recognizer. In this section we define precisely the
way in which the new analysis feature vector is computed.
In Section III we describe the experimental evaluation of
the improved system in each of the three modes in which
it was tested, namely, speaker trained, multispeaker, and
speaker independent. Finally, in Section IV, we summa-
rize the results and point out the relevance to general
problems in speech recognition.

II. ReEviEw oF HMM ConNEcTED DiGIT RECOGNIZER

A fairly comprehensive description of the complete
connected digit recognizer is given in [7]. Thus, in this
section, we will give only an overview of the recognition
system, and then will focus on the improved front end
spectral analysis.

A block diagram of the overall level building, con-
nected-digit recognizer is shown in Fig. 1. There are es-
sentially three steps in the recognition algorithm, as fol-
lows.

1) Spectral analysis—The speech signal, s(n), is con-
verted to a set of LPC derived cepstral (weighted) and
delta-cepstral (weighted) vectors.

2) Level building pattern matching—The sequence of
spectral vectors of the unknown speech signal is matched
against a set of stored single-digit patterns (hidden Mar-
kov models) using the level building algorithm with Vi-
terbi matching within levels. The output of this process is
a set of candidate digit strings, generally of different
lengths (i.e., different number of digits per string).

3) Postprocessor—The output candidate strings from
level building are subjected to further validity tests, e.g.,
state duration, to eliminate unreasonable candidates. The
postprocessor chooses the most likely digit string from the
remaining (valid) candidate strings.

In the remainder of this section we expand further on
the LPC spectral analysis (since this is fundamentally dif-
ferent from the one used in previous studies), and on the
form of the HMM’s. All other signal processing in the
recognizer is essentially identical to that described in [7}].

A. LPC Spectral Analysis

The LPC front end processing for recognition is shown
in Fig. 2. The overall system is a block processing model
in which a frame of N samples is processed and a vector
of features is computed. (Strictly speaking, as we will see
below, this is not correct since the system uses a 5 frame
window to compute the delta cepstrum vector.) The steps
in the processing are as follows.

1) Preemphasis—The digitized (at a 6.67 kHz rate)
speech signal is processed by a first-order digital network
in order to spectrally flatten the signal.

2) Blocking into frames—Sections of N consecutive
speech samples (we use N = 300 corresponding to 45 ms
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Fig. 1. Block diagram of connected digit recognizer.
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Fig. 2. Block diagram of improved front end LPC analysis incorporating
instantaneous and transitional cepstral information.

of signal ) are used as a single frame. Consecutive frames
are spaced M samples apart (we use M = 100 correspond-
ing to 15 ms frame spacing, or 30 ms frame overlap).

3) Frame windowing—Each frame is multiplied by an
N-sample window (we use a Hamming window) so as to
minimize the adverse effects of chopping an N-sample
section out of the speech signal.

4) Autocorrelation analysis—Each windowed set of
speech samples is autocorrelated to give a set of (p + 1)
coefficients, where p is the order of the desired LPC anal-
ysis (we use p = 8).

5) LPC/cepstral analysis—For each frame, vectors of
LPC coefficients are computed from the autocorrelation
vector using a Levinson or a Durbin recursion method.
The LPC derived cepstral vector is then computed up to
the Qth component, where Q > p, and Q = 12 in our
implementation.

6) Cepstral weighting—The Q-coefficient cepstral vec-
tor, c¢;(m), at time frame [, is weighted by the window,
W.(m), of the form [12], [13]

W, (m) = [1 + %sin <%>] lsm=<Q

to give
&(m) = c(m) - We(m). (2)

(In theory, the use of cepstral weighting is irrelevant for
diagonal covariance HMM’s. However, since we used the
weighted cepstal coefficients in the design of a codebook
for choosing mixture parameters, based on a Euclidean
distance, the weighting is relatively important.)

7) Delta cepstrum—The time derivative of the se-
quence of weighted cepstral vectors is approximated by a
first-order orthogonal polynomial over a finite length win-

(1)
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dow of (2K + 1) frames, centered around the current
vector. (K = 2 in our implementation; hence, the deriv-
ative is computed from a 5 frame window.) The cepstral
derivative (i.e., the delta cepstrum vector) is computed as

Ag(m) = LZ_K ké,_k(m):l -G, 1=m=<@Q (3)

where G is a gain term so that the variances of é;(m) and
Aé&(m) are about the same. (For our system, the value
of G was 0.375.)

The overall observation vector, O,, used for scoring the
HMDM’s is the concatenation of the weighted cepstral vec-
tor, and the corresponding weighted delta cepstrum vec-
tor, i.e.,

0, = {&(m), Ag(m)}, (4)

and consists of 24 coeflicients per vector.

B. Hidden Markov Model Characterization of Words

Fig. 3 shows the form of the HMM used to characterize
individual digits [14]-[16]. (Transitions between words
are handled by a switch mode from the last state of one
word model, to the first state of another word model, in
the level building implementation.) The models are first-
order left-to-right Markov models with N states.! (We
have used values of N from 5 to 10.)? Each state, j, is
characterized by the following.

1) A state transition vector, a;, with components a; =
probability of making a transition to state i (at the next
transition instant), given that the system is currently in
state j. For the ergodic models of Fig. 3, a;; satisfies the
constraints

(5)

since we allow transitions from state j only to itself or to
state j + 1.
2) A state observation density, b;(0), of the form

a; =0, i<}, and fori > j + 1

M

b](O) = m@] ijN[O, Pomj» Um] (6)
i.e., a continuous mixture density where O is the obser-
vation vector (e.g., cepstral coefficient vector resulting
from the LPC analysis), ¢, is the mixture weight for the
mth component in state j, N represents a multivariate nor-
mal density, u,,; is the mean vector for mixture m in state
j, and U,; is the covariance matrix for mixture m in state
j. Typically, we use anywhere from M = 1 to M = 9
mixture components. In practice, we have observed that
components of O are essentially uncorrelated. Hence, we

'We use the notation N to represent the number of states in an HMM,
and use M to represent the number of mixtures per state. Previously we
used N and M as the number of samples per frame in the LPC analysis and
the shift per frame. This should cause no confusion as we will not refer to
the LPC-analysis parameters again in the math.

>The choice of values of number of states, N, and number of mixtures
open state, M, for the word vocabulary is somewhat of an art, and is highly
dependent on both the vocabulary words and the amount of training data.
No simple rules for such choices are known.
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Fig. 3. Form of word HMM used to characterize individual digits.

assume that all components of O are statistically uncor-
related. Thus, U,,; becomes a diagonal covariance matrix,
and (6) can be expressed simply as

D

M 1 exp [~(O(d) - ymjd)z/Zaz,,,jd]
b(0) = mz=:1 O T o/ D Y
(2m) /<,11;II af,,jd>

(7)
where 0@ is the dth component of the observation vec-
tor, D is the number of components in O, pq is the dth
component of p,,;, and 0,2,,jd is the dth covariance of U,;.

3) Energy probability, p;(e), where € is the dynami-
cally normalized frame energy, and p; is a nonparametric
discrete density of energy values in state j obtained em-
pirically from training data. The energy values are com-
puted on a log scale (i.e., in decibels), and the energy
probabilities are quantized into 25 3-dB regions from O
dB (absolute peak over a syllable length window) down
to —75 dB and suitably normalized (based on a training
set) so that

25
g:l Pj(fi) =1 (8)

The choice of a 75 dB range on energy values reflects the
range of variability of talkers, channels, and speech levels
within a given channel.

4) State duration probability, p;(7), where 7 is the
number of frames spent in state j, and p; is an empirically
measured, discrete density of duration values in state j.
State durations are inherently quantized and are limited to
values of 25 (frames) or less. Again, the state duration
probabilities are normalized so that

25
Z pi(m) = 1. (9)

In addition to the observation density, energy probabil-
ity, and state-duration probability, each HMM (for each
word, v) is also characterized by an overall word-dura-
tion density, p, (D), of the form

po(D) = N[D,, o7 (10)
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where D, is the average duration for word v, o2 is the
variance in duration for word v, and N is the normal den-
sity.

Based on the above, the process of building an HMM,
of the type shown in Fig. 3, to characterize a word, re-
quires estimation of

1) 2N — 2 values of a
cients;

2) NM values of c,,;, the mixture gains;

3) NMD values of p,,;,, the mean values of the ob-
servations;

4) NMD values of [U,,;],, the diagonal covariances
of the observations;

5) 25N values of p;(€), the energy probability;

6) 25N values of p;(7), the state-duration density;
and

7) the value of D, and of o>, the average and vari-
ance of overall word duration.

;» the state transition coeffi-

All these parameters are estimated (or measured) from a
training set as discussed in the next section.

C. Training the Hidden Markov Models

In the case of building digit models from connected-
digit training strings, the first step in building digit models
is to segment optimally the digit strings into individual
digits. For this task, a segmental k-means training pro-
cedure has been shown to be an effective way of converg-
ing at the optimum string segmentation [6]. A block dia-
gram of the segmentation procedure is given in Fig. 4.

We assume that an initial set of word-pattern files is
available. These initial files can equally well be a set of
templates or HMM’s. The templates or models can be a
speaker independent set, a speaker trained set, or a des-
ignated training speaker set.

Give the initial word-pattern files and the training files
(which consist of digit strings of various lengths), a level-
building word-segmentation algorithm (of the type dis-
cussed in Section II-C) is used to optimally segment the
training strings into individual word tokens which are
stored in word-token files. A word-pattern-building al-
gorithm (i.e., a model-estimation procedure for HMM’s)
is used to give an updated set of word patterns. The above
procedure is iterated until the difference between the word
patterns in consecutive iterations is sufficiently small [6].

1) Building HMM'’s for Each Word: Given a training
set of W tokens of a word, the training problem for the
HMM-based recognizer is to get optimal estimates of the
complete set of HMM parameters for one or more models.
The case of multiple models is essentially identical to that
of single models. The only difference is that the training
set is first clustered (using standard clustering procedures)
and then a model is built for each cluster. Hence, we will
concentrate here on parameter estimation for a single
HMM from a finite training set of word tokens.

We have considered, and used, two methods for ob-
taining estimates of the HMM parameters, namely, the
Baum-Welch reestimation procedure, and a segmental k-
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Fig. 4. Block diagram of the segmental k-means training procedure.

means loop based on segmentation of the words into in-
dividual states.

The Baum-Welch reestimation procedure is the stan-
dard method for estimation of the HMM parameters [14],
[15]. Consider a single observation sequence, O, corre-
sponding to a single word token. Let O = 0,0, * * - Or.
We define the forward calculation, o, (i), as

a,(i) = Prob (0,0, - - - O, and state i at t‘)\)

(11)

i.e., the probability of being in state /, at time ¢ given the
model \. We compute «, (i ) recursively, i.e.,

o, (i) L; a»r—l(j)ajz}(bi(or) ’ Pi(fr)%) (12)

where p;(¢,) " is a weighted probability that energy ¢, oc-
curs in state i. Similarly, we define the backward function

B,(Jj)as

B,(j) = Prob (0,,,0,,, - - - 0,| state j at # and \).

(13)
We compute 3,( j ) recursively as
N

B.(j) = {i; aji[bi(owl)pi(ewl)%] 3:+|(i)i|- (14)

To complete the reestimation picture, we need a third
function, p,( j, m), defined as
pl(jv m)
= Prob (0,0, - - - O, state j, mixture m at t|\).

(15)
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The p function can be computed recursively as
N

p(j, m) = E] o1(i) azlcmb)™ (0,) pi(e)™ ] (16)

Using «, 83, and p, the reestimation equations for a, ¢, u,
U, and p(¢) are

T-1
1§1 o (i) aijbj(0;+1) pj(fH—l)% Biei(J)
ij T >

2 (i) Bili)

Ql
Il

1<i,j=<N, (17)

T
téle p,(j, m) B.(J) l=m=<sM

Z'mj = T ’ <j < N (18)
2 () Bi(J) R
T
2 o(iim) g(j)o@ 1=m=M
—_ t=1 .
Kmjd = T , 1 =] = N
El o.(j, m)B.(j) 1 <d =< D

(19)

T
Z P,(j, m) B,(])(OE” - ”‘mjr)(0$s) - l"mjx)

T7 _ =1
Umjrs - ’

2 p(jsm) B(J)

m=<M

A A
~.
IA
2

IA
5%
IA

D; (20)
) a,(Jj) Br(])

r,

2
Bi(e(k)) = repet (21)

r§1 o j) B(J)

Equations (11)-(21) are readily extended to the case of
multiple training sequences [14].

The basic problem with the reestimation equations is
the amount of computation associated with implementing
equations (11)-(21) with large scale problems, e.g., 2500
training tokens and eight-state five-mixture models. To
alleviate this difficulty, a segmental k-means algorithm
was used to provide estimates of ¢, u, U, and p (¢). This
method segments each training token into states by deter-
mining the optimal (Viterbi) alignment of the current
model with each training token. All frames for a given
word, in a given state, are used as input to a clustering
algorithm (i.e., a vector quantizer design procedure)
which determines the best M cluster solution (codebook).
The reestimate of the ¢’s is just the number of vectors in
a given cluster, divided by the total number of vectors in
the state. The u and U for each cluster are determined
from the vectors within each cluster. The transition coef-
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ficients are reestimated based on the average duration in
a state, and the energy probability histogram is measured
from the vectors occurring in the state. Similarly, the state
duration probability is measured from the training-set seg-
mentation into states, and the overall word duration and
variance is measured directly from the initial k-means
segmentation into words.

The segmental k-means reestimation of the HMM pa-
rameters is faster than the Baum-Welch reestimation pro-
cedure, and all our experimentation indicates that the re-
sulting parameter estimates are essentially identical in that
the resulting HMM’s had essentially the same likelihood
values. As such, we have extensively used the segmental
k-means procedure, and all results to be presented here
are based on this aigorithm.

D. Level Building on HMM s

The way in which level building is used on HMM’s is
illustrated in Fig. 5. If we denote the set of ¥ word HMM
as \,, 1 < v < V, then to find the optimum sequence of
HMM'’s that match O (i.e., that maximize the likelihood),
a sequence of Viterbi matches is performed. For each
HMM, \,, we do a Viterbi match against O, starting at
frame 1, level 1, and retain for each possible frame, i, the
following:

1) PY(i), the accumulated probability to frame i, at
level I, for reference model A, along the best path;
and

2) F¥(i), a backpointer indicating where the path
started at the beginning of the level.

To compute P! (i), we need a local measure for the
probability that observation O, occurred in state j of model
N,. The one we use is of the form

pi(0) = £(0)) - [p(&)]" - K,

where v, is an energy-scaling coefficient, and K, is a nor-
malization constant (which depends on v,) such that (22)
is a true probability. The value used for vy, in our experi-
ments was 0.375. The state transition coefficients enter
the calculation of PY(i) via the dynamic programming
optimization in determining the Viterbi path.

At the end of each level, I, a maximization over v is
performed to get the best model, at each frame, i, as fol-
lows:

(22)

PE(i) = max Pj(i) (23a)
l=sv=sV

WwE(i) = argmax P (i) (23b)
lsvs<sV

FB(i) = F*1(i). (23¢c)

A best string of size  words (1 = [ < L) with probability
P3(1) is obtained by backtracking using the backpointer
array F2(i) to give the words in the string. The overall
best string is the maximum of P2(i) over all possible
levels, [.
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Fig. 5. Illustration of how level building is used with hidden Markov
models.

E. Use of Duration (State, Word) in HMM Scoring

In the process of determining the best set of modelis that
match a given input string, for each frame, i, of the test
sequence, we use a local measure of the probability that
the observation, O;, occurred in state j of model v. If we
denote this probability as p;, then we have

pi = b'(0) - [P;"(fi)]% - K (24)
as the local probability measure. For convenience, a ‘‘lo-

cal distance’’ can be obtained by taking the negative log
of p;, giving

d; = —log (p;)

—log (b;(on)) - 7. log (Pj”(fi)) — log X;.
(25)

The major problem associated with scoring HMM models
using (24) or (25) is that there is no durational information
incorporated, either explicitly or implicitly, into the local
distance measure. The implicit state duration density is
exponential because of the Markov property of the model,
i.e., the probability of duration 7 in state j is proportional
to (a]-j)T. Clearly, such a duration density is incorrect in
almost all cases. There are several ways in which other
duration densities could be incorporated into the HMM
scoring including the ‘‘Ferguson’’ internal model in which
an explicit duration density is used (thi§ work by Fergu-
son is unpublished), the Levinson model in which a par-
ametric form of duration density is used [17], and a post-
processor model in which duration is accounted for in a
postprocessor [16]. (In this case, the exponential duration
density is still explicitly present in the model.) Since both
the Ferguson and Levinson models significantly increase
the computation associated with scoring, we have opted
for the simpler postprocessor duration model.
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The way in which word and state durations are incor-
porated into the model scoring is as follows. At the end
of each level, for each frame, the accumulated probabil-
ity, P (i), is modified by determining the word duration,
T.(i), as

(i) =i — FP(i) + 1 (26)

and then multiplying the accumulated probability by the
word duration probability, i.e.,

PP(i) = PE(i) - [N(ru(i), D. )] - K, (27)

where N is a normal density with mean D and variance
o%, and where v,,p is a weighting factor on word dura-
tions, and K, is a normalization constant which depends
on v,,p and which makes (27) a true probability. The value
used for v,,p in our experiments was 3.

State duration probabilities are incorporated in a post-
processor. The level-building recognizer provides multi-
ple candidates at each level. Hence, overall probability
scores are provided for R” strings of length L, where R is
the number of candidates per level (typically R = 2).
Each of the R” strings is backtracked to give individual
words and individual states within the words. For an
L-word string, if we denote the duration of state j at level
las A;( j), then, for each possible string, the postproces-
sor multiplies the overall accumulated probability, PA(I),
by the state-duration probabilities, giving

L N
PR = PEI - 1 T [ e )] - £

(28)

where vy, is a weighting factor on state durations, and K;
is a normalization constant which depends on ygp. The
value used for ygp in our experiments was 0.75. The com-
putation of (28) is performed for all (R)* strings, and a
reordered list of best strings is obtained. The incremental
cost of the postprocessor computation is negligible com-
pared to the computation to give P} (1), and its perfor-
mance has been shown to be comparable to the perfor-
mance of the internal duration models [16].

F. Comments

It is worth noting that a frame synchronous implemen-
tation (rather than the level synchronous used here), suit-
able for real-time processing, has been developed and
shown to yield results identical to those of the current sys-
tem [18]. Also, a real-time implementation of the system
has been built using a processor board, called the ASPEN
(AT&T Systolic Processor Ensemble) board, with 8 DSP-
32 chips (AT&T), an AT&T PC 6300+ personal com-
puter, and a special purpose LPC spectral analysis board
(again based on a DSP-32 chip) [19].

III. EXPERIMENTAL EVALUATION AND RESULTS

To evaluate the performance of the connected-digit re-
cognizer, in speaker trained, multispeaker, and speaker
independent modes, two databases were used.

'
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The first database consisted of 50 talkers (25 male, 25
female) drawn from the local, nontechnical, population
(i.e., all talkers were native New Jersey residents). Each
talker recorded 1200 connected-digit strings in about five
sessions, during a 1-week period, over local dialed-up
telephone lines. A new line was used for each recording
session. The digits vocabulary consisted of the 10 digits
(zero to nine); the word ‘‘oh’’ was excluded. Each talker
recorded an equal number of strings with from 1 to 7 dig-
its. Within each string, the digits were selected at ran-
dom; however, during the test there was a constraint that
there be an equal number of occurrences of each digit. All
recordings were made in a reasonably quiet environment;
however, because of line variations and talker loudness
variations, some recordings had very bad signal-to-noise
ratios (i.e., on the order of 10-20 dB). A check was made
on each recorded string to guarantee that the correct string
was spoken. Subsequent checking of a part of the data-
base showed that the checking process was itself error
prone and in fact at least 155 of the recorded strings which
passed the first check had some type of recording prob-
lem. Because of the inexperience of the 50 talkers, a rather
large number of the spoken strings were unusable (gen-
erally because of gross speaking errors in which only par-
tial or incomplete strings were spoken), and about 21 per-
cent of the 60 000 recorded strings (i.e., 12 600 strings)
were eliminated. The talker with the most difficulty had
about 50 percent of his strings (604 of 1200) eliminated,
the talker with the least difficulty had only 47 of 1200
strings eliminated. Overall there remained 47 336 strings
in the database. We denote the 50-talker database as DB50
in tables and in the text. This database was used in the
speaker trained, and multispeaker evaluations.

The second database, which was used to evaluate the
connected digit recognizer in a speaker independent mode,
was the TI connected digits database [20], as distributed
by the National Bureau of Standards. This database con-
tained connected digit strings from 225 adult talkers'
(equally distributed among male and female talkers), and
was conveniently divided into training and testing sets,
for consistency of comparison of results among the dif-
ferent researchers using this database. This database was
dialectically balanced with an equal mix of talkers from
22 dialectical regions. At least 10 talkers (5 male, 5 fe-
male) from each dialectical region were included in.the
database. The vocabulary consisted of 11 words, namely,
the 10 digits and ‘‘oh.”” Each talker spoke 77 sequences
of these digits, consisting of 2 tokens of each of the 11
digits in isolation, and 11 sequences of each of 2, 3, 4,
5, and 7 digits (i.e., no 6-digit sequences were spoken).
Digits were selected at random without replacement with
one exception, namely, the digits zero and ‘‘oh’’ never
occurred in the same string. The digit strings were re-
corded in an acoustically treated sound room using a high
quality microphone (Electro Voice RE-16 Dynamic Car-

'Included in the TI database were connected digit strings from chiidren.
These strings were not used in our evaluations.

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. VOL. 37. NO. 8. AUGUST 1989

diod). All recorded strings were verified by a team of lis-
teners at TI [20]. We refer to this database as DBTI in
figures and in tables.

As provided by the National Bureau of Standards, the
digitized strings were sampled at a 20 kHz rate. For con-
sistency with the telephone bandwidth of the strings of
DBS50, all strings were digitally filtered to a 3.2 kHz
bandwidth, and downsampled to a 6.67 kHz rate. A total
of 8568 training strings and 8578 testing strings were used
(a small number of the strings on the digital tapes were
unreadable). It should be noted that many of the strings
had distinct silence gaps between groups of digits. Al-
though it would have been possible to account for these
silence gaps either by explicit methods (i.e., reendpoint
the recorded strings) or by creating a silence model, nei-
ther of these procedures was actually used.

Database DB50 was split (at random) into a training set
and a testing set, each consisting of roughly half the ut-
terances for each talker and for each string length in the
database. The training and testing sets for DBTI were
specified by TI as an integral part of the database. The
training sets were used to derive additional word HMM’s;
the independent test sets were used to measure system
performance. The segmental k-means training procedure
was always bootstrapped from word models derived from
the isolated digits within the database [6].

A. Speaker Trained Mode Results

For the speaker trained case, two sizes of HMM’s were
studied, namely, 1 with 5 states and 3 mixtures per state
(the same size model as was used in [7]), and | with 8
states and 5 mixtures per state. (The choice of these op-
erating points is somewhat arbitrary and was based on
previous experience with representing digits by HMM’s.)
The results of the recognition runs for the speaker trained
case are given in Table I. Table I(a) gives string error
rates (in percent) for unknown length (UL) and known
length (KL) strings, for both the training set and the in-
dependent testing set, for the two HMM’s that were stud-
ied. (All results for speaker trained runs were obtained
using DB50.) Table I(b) gives a breakdown of the string
error rates for unknown length strings as a function of the
number of digits in the string.

The results given in Table I show the following.

1) Recognition performance is uniformly better for the
larger model (8 states) than for the smaller model (5
states).

2) String error rates on the testing set are about twice
as large as on the training set, although the absolute dif-
ferences in error rates are still small.

3) String error rates for KL strings are about half those
of UL strings for both the training and testing sets.

4) UL string error rates increase uniformly with the
number of digits in the string, up to about 4 digits per
string; for longer strings the error rates are much larger
(around 1.4 percent), and are relatively insensitive to the
number of digits in the string. (The reason for such be-
havior is unclear; the only explanation is that the average



RABINER et al.: HIGH PERFORMANCE CONNECTED DIGIT RECOGNITION

TABLE 1
(a) STRING ERROR RATES (PERCENT), FOR SPEAKER TRAINED MODE, FOR
UNKNOWN LENGTH (UL), AND KNOWN LENGTH (KL) STRINGS ON DB50,
FOR Two SIZES OF HMM. (b) STRING ERROR RATES (PERCENT), FOR
SPEAKER TRAINED MODE, FOR UNKNOWN LENGTH STRINGS, AS A
FUNCTION OF THE NUMBER OF DIGITS IN THE STRING, ON DB50, FOR TwoO

Sizes oF HMM
Training Set | Testing Set
HMM UL | KL UL | KL
8 states, 5 mixtures/state | 0.39 | 0.16 { 0.78 | 0.35
5 states, 3 mixtures/state | 0.62 | 0.29 1.02 | 0.47
(@)
-Number of Digits in String
HMM 1 2 3 4 5 6 7
8 states, 5 mixtures/state | 0.11 | 0.28 | 0.50 | 0.59 | 1.51 | 1.43 | 1.21
5 states, 3 mixtures/state | 0.38 | 0.40 | 0.94 | 0.89 | 1.78 | 1.52 | 1.36
(b)

rate of articulation for strings of length 4-7 digits, for this
database, is approximately constant [7].)

The results given in Table I are based on the 23 750
strings' spoken by the 50 talkers in the experiment. One
interesting statistic is the individual speaker performance.
This performance is illustrated in Fig. 6 which shows a
cumulative plot of the percentage of talkers with testing
string error rates above some threshold, E, for both UL
[part (a)] and KL [part (b)] strings. It can be seen that for
UL strings, the median string error rate is 0.6 percent
(slightly lower than the average string error rate of 0.78
percent) and the talker with the highest error rate had 4.6
percent string errors. Similarly, for KL strings, the me-
dian string error rate is 0.23 percent (again slightly
smaller than the average rate of 0.35 percent) and the
talker with the highest error rate had 1.8 percent string
errors.

B. Multispeaker Mode Results

For the multispeaker mode, using the training set of
DB50, recognition systems were studied with from 1 to 6
models for each digit. The way in which multiple models
were created was as follows. First, all the training strings
were used to create a set of digit HMM’s. (Two things
should be noted here; first, only one-fourth of the set of
training strings were used, i.e., about 6000 strings, be-
cause of computational constraints in the clustering al-
gorithms; second, based on experience and intuition, we
only considered models with N = 10 states, M = 9 mix-
tures per state.) Using a single model per digit set (de-
signed using standard methods), the 6000 training strings
were optimally segmented into individual digits, and these
digit tokens were clustered into from 1 to 6 clusters for
each of the 10 digits. An individual HMM was designed
for each of the clusterings, thereby leading to sets of
HMM’s with from 1 to 6 models per digit.

The results of the recognition tests in the multispeaker
mode are given in Table II which shows string error rate
breakdowns for training and testing sets, and as a function
of the number of digits per string for cases with from 1 to
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Fig. 6. Cumulative plots of percentage of talkers with testing set string
error rates above a threshold for the speaker trained case; (a) for UL
strings; (b) for KL strings.

TABLE I1
(a) STRING ERROR RATES (PERCENT), FOR MULTISPEAKER MODE, FOR
UNKNOWN LENGTH (UL), AND KNOWN LENGTH (KL) STRINGS ON DBSO0,
AS A FUNCTION OF THE NUMBER OF MODELS PER DIGIT, FOR AN HMM WITH
10 STATES, 9 MIXTURES/STATE. (b) STRING ERROR RATES (PERCENTS),
FOR MULTISPEAKER MODE, FOR UNKNOWN LENGTH STRINGS, AS A
FUNCTION OF THE NUMBER OF DIGITS IN THE STRING AND THE NUMBER OF
MODELS PER DiGIT, ON DB50, FOR AN HMM wiTH 10 STATES, 9

MIXTURES/STATE
Number of | Training Set | Testing Set
Models Per

| Digit UL | KL | UL | KL

1 4.89 | 2.30 | 5.61 | 2.53

2 343 | 181 [ 414 | 2.17

3 2.84 | 145 | 3.59 | 1.86

4 2.54 | 142 | 3.23 | 1.77

5 198 | 1.12 | 3.12 | 1.79

6 1.74 | 0.98 | 2.85 | 1.65

(a)
Number of Number of Digits in String
Models Per
Digit 1 2 3 4 ) 6 7
1 0.30 | 2.65 | 4.15 | 6,58 | 860 | 8.59 | 9.37
2 0.19 | 1.99 | 3.06 | 452 | 6.30 | 6.61 | 7.07
3 0.22 | 1.57 [ 262 | 3.84 | 531 | 583 | 6.42
4 0.22 | 1.59 | 2.15 | 340 | 5.13 | 540 | 5.27
5 0.14 | 1.59 | 2.27 | 3.51 | 452 | 5.15 | 5.18
6 0.22 | 1.57 | 1.97 | 3.10 | 4.59 | 4.34 | 4.68
(b)

6 models per digit. The results in Table II show the fol-
lowing.

1) String error rates are significantly reduced by using
more than 1 model per digit. For the training set, string
error rates are reduced by a factor of about 2.5 as the
number of models per digit is increased from |
model /digit to 6 models /digit; for the testing sct the
comparable reduction in error rate is about 1.7 to 1.
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Fig. 7. Cumulative plots of percentage of talkers with testing set string
error rates above a threshold for the multispeaker case; (a) for UL strings;
(b) for KL strings.

2) String error rates for training and testing sets are
considerably closer than they were for the speaker trained
case of Table I.

3) For the case of 6 models per digit, the resulting
string error rates on the independent test set were 2.85
percent for unknown length strings and 1.65 percent for
known length strings.

4) The error rates for isolated digits are very low (0.22
percent for 6 models per digit); the string error rates rise
uniformly for 2-5 digit strings, then flatten off at a rate of
about 4.5 percent.

Fig. 7 shows a cumulative plot, for the testing set, of
the percentage of talkers with string error rate above a
rate, E, for UL [part (a)], and KL [part (b)] strings, re-
spectively. The median error rates of 2.5 percent (UL
strings) and 1.4 percent (KL strings) are slightly lower
than the average string error rates of 2.85 and 1.65 per-
cent. The talker with the highest string error rate had 13
percent string errors (UL) and 6 percent string errors (KL).
(Note that the scales in parts (a) and (b) of Fig. 8 are
different.)

C. Speaker Independent Mode Results

For the speaker independent tests of the recognizer, da-
tabase DBTI was used. The specified training set was used
to create from 1 to 6 models per digit, in a manner similar
to the one used in the multispeaker case. All 8565 training
strings were used to create each set of models. The com-
plete set of 8578 testing strings was used to evaluate the
recognizer performance on the testing set. (The reader is
reminded that, for this database, the vocabulary included
the digits ‘‘oh’’ and zero, as well as one to nine.)

The results of the speaker independent recognition tests
are given in Table III. The form of the table is the same
as was used for Table 1I in the previous section. The re-
sults show the following.
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Fig. 8. Cumulative plots of percentage of talkers with testing set UL string
error rates above a threshold for the speaker independent case; (a) for
male talkers; (b) for female talkers; (c) for the combined talker set.

TABLE 111
(a) STRING ERROR RATES (PERCENT), FOR SPEAKER INDEPENDENT MoDE,
FOR UNKNOWN LENGTH (UL), AND KNOWN LENGTH (KL) STRINGS, ON
DBTI, As A FUNCTION OF THE NUMBER OF MODELS PER DIGIT, FOR AN
HMM witH 10 STATES, 9 MIXTURES/STATE. (b) STRING ERROR RATES
(PERCENT), FOR SPEAKER INDEPENDENT MODE, FOR UNKNOWN LENGTH
STRINGS, AS A FUNCTION OF THE NUMBER OF DIGITS IN THE STRING, AND
THE NUMBER OF MODELS PER DIGIT, ON DBTI, FOR AN HMM wiTH 10
STATES, 9 MIXTURES/STATE

Number of Testing Set
Models Per

Digit UL { KL | UL | KL

Training Set

1 2.84 | 1.19 | 4.35 | 2.15
1.90 | 0.71 | 3.64 | 1.88

1.52 | 0.53 | 3.10 | 1.67

1.24 | 0.36 | 2.94 | 1.75
301 | 189

1.13 | 0.34

o |u & v e

1.05 | 0.35 | 3.01 1.90
(a)

Number of Number of Digits in String

Models Per
Digit 1 2 3 4 5 7
1 0.69 | 2.20 | 5.13 | 590 | 7.13 | 8.73

0.61 | 1.96 | 3.99 | 5.33 | 6.64 | 6.37
0.49 | 1.79 | 3.42 | 443 | 574 | 5.39

069 | 1.79 | 3.10 | 3.77 | 5.08 | 5.47
061 | 1.79 | 3.59 | 4.18 | 5.16 | 5.14
0.73 | 1.55 | 3.42 | 402 | 541 | 5.22

(b)

o | o fw o

1) For the training set there is a reduction in string er-
ror rate of about 3 to 1 as the number of models per digit
increases from 1 to 6; for the independent testing set the
reduction in string error rate is only a factor of 1.5 for UL
strings and 1.2 for KL strings.

2) A very large difference in performance exists be-
tween the training and testing sets, both for UL and KL
strings. For example, for 6 models per digit, the string
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error rate for UL strings is a factor of 3 smaller; for KL
strings the error rates differ by a factor of 5.5.

3) The string error rates on the testing set level off at
about 3-4 models per digit; for 4 models per digit the UL
string error rate is 2.94 percent, the KL string error rate
is 1.75 percent.

4) The isolated digit error rate for 6 models per digit is
0.73 percent; string error rates for UL strings increase
uniformly from 2 to 5 digits per string. For 7 digit strings,
the string error rate is essentially equal to that of 5 digit
strings since no possibility of digit insertions existed, i.e.,
the maximum string length allowed was 7 digits.

Fig. 8 shows cumulative plots, for the testing set based
on UL strings, of the percentage of talkers with string
error rate above a threshold, Ey;, for the male talkers [part
(a)], the female talkers [part (b)], and the combined talker
set [part (c)]. Table IV gives a breakdown according to
the number of string errors (out of the 77 spoken strings
per talker), for males and females. The median UL string
error rates are 1 percent for males, 0.7 percent for fe-
males, and 0.9 percent for the combined population. The
UL string error rates are lower, by a factor of about 3,
than the average error rates reported in Table III using 3
models per digit, showing that a large percentage of the
string errors were generated by a small fraction of the
talkers. This result was noted by Bush and Kopec [5].

D. Effects of Number of States, Number of Mixtures Per
State

To demonstrate the effects of using fewer than 9 mix-
tures per state, or fewer than 10 states in each word HMM,
an experiment was run using the DBTI database, in which
a set of HMM’s were designed with N = §, 8, and 10
states, and with M = 1, 3, 5, 7, and 9 mixtures per state.
In each case, for reasons related to computation, only a
single HMM was designed for each digit; hence, the string
error rates will be no better than the results in the first row
of Table I1I(a). The results of this experiment, in the form
of string error rates for UL strings [part (a)] and KL strings
[part (b)], as a function of M, for different values of N,
are given in Fig. 9. It can be seen that as M goes from 1
to 3, a significant reduction in string error rate occurs.
Further increases in M result in small reductions in string
error rate. Eventually, for large enough M, a statistical
fluctuation in string error rate results. The effects of N are
also clear. As N goes from 5 to 8, a significant reduction
in string error rate results; however, as N goes from 8 to
10, there is no real performance difference for UL strings,
but for KL strings there is a significant performance im-
provement.

E. Effects of Using Delta Cepstrum or Cepstrum Alone

Two brief experiments were carried out, using database
DBTI, in which the feature set for recognition (the obser-
vation vectors) was changed from the combination of
weighted cepstrum and weighted delta cepstrum to just
the weighted delta cepstrum alone, or just weighted band-
pass cepstrum alone (as was used in [7]). For these tests,
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TABLE IV
DISTRIBUTION OF STRING ERRORS FOR UL STRINGS IN THE TESTING SET
BASED ON USING THREE MODELS PER DIGIT

[ Number of String Errors
— 1
Gender 0 1 2 3{4({5(6]78(9]10 >10 Total
Men 20[10f[10]{5({2j1|0(0]|3]0 1 3(15,18,22) 55
Women || 23 | 10 9 71332110 ]11]1 0 2(16,18) 57
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Fig. 9. Plots of testing set string error rates as a function of the number of
mixtures per model for the speaker independent case; (a) UL strings, (b)
KL strings.

a one-model-per-digit system was used with 10 states and
9 mixtures per state for each model. The results for these
tests showed the following.

1) The error rates on the testing set, using just the
weighted delta cepstrum coefficients, were 10.2 percent
for UL strings, and 4.3 percent for KL strings, as con-
trasted to 4.35 percent for UL strings, and 2.15 percent
for KL strings using the combined cepstrum.

2) The error rates on the testing set, using just the
weighted cepstrum coefficients, were 12.7 percent for UL
strings and 6.4 percent for KL strings.

These results show that the information in the ‘‘instan-
taneous’’ and *‘transitional’’ feature is somewhat comple-
mentary and that the combination of the feature sets gave
much better performance than either of the individual fea-
ture sets. Whether or not further gains could be achieved
using higher order transitional features is an open ques-
tion of interest.

One last experiment was tried, based on work by Furui
[10], in which the observation vector was created by add-
ing the weighted delta cepstrum to the weighted cepstrum
to create a feature set with only 12 components. The re-
sults using this additive set of features were the following
(again with 1 model per digit, 10 states, and 9 mixtures
per state).

1) The error rates on the testing set were 8.1 percent
for UL strings and 2.8 percent on KL strings. These re-
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sults, although better than either of the individual feature
vectors, are still inferior to the results obtained from the
combined feature vectors, again pointing out the impor-
tance of retaining both instantaneous and transitional
spectral information in the observation vector.

F. Error Analysis for SI Runs

An analysis of the errors for the speaker independent
testing run (using DBTI data) showed the following.

1) 66 digit. insertions—exactly half (33) of these in-
volved inserting an ‘‘oh’” after the digit zero. This type
of error leads to a semantically incorrect string and could
easily be eliminated in the digit grammar. The digits 6
and 2 were inserted 8 and 7 times, respectively. All other
digits were inserted 5 times or less.

2) 61 digit deletions—almost half of these (29) in-
volved a deletion of the word ‘‘oh’’ in the context of 2 or
more repetitions of ‘‘oh,’’ e.g., ‘‘oh-oh’’ was recognized
as ‘‘oh’’ or ‘‘oh-oh-oh’’ was recognized as ‘‘oh-oh.”’ The
digit ‘‘oh”> was deleted 8 other times (i.e., not in the con-
text of multiple ‘‘oh’s’”), and the digit 8 was deleted 19
times. No other digit was deleted more than 2 times.

3) 221 digit substitutions—about 40 percent of the digit
substitutions (89) involved the word ‘‘oh.”” Most of the
time an ‘‘oh’’ was substituted for the correct digit. The
only other consistent digit substitution was a 9 for a 5,
which occurred 23 times.

The above analysis shows that in about half the digit
errors, the word ‘‘oh’” was involved. This result is to be
expected since ‘‘oh’’ can be spoken rather rapidly and
therefore is a prime candidate for digit insertion, deletion,
or substitution.

An analysis was also made of errors in the recognition
of the training set, and trends very similar to those dis-
cussed above were found.

IV. DIscussiON

In this paper we have presented results that demonstrate
major improvements in our ability to recognize relatively
unconstrained strings of connected digits (i.e., strings up
to 7 digits in length). We have shown that by incorporat-
ing information about the time derivatives of the cepstral
coefficients, along with instantaneous cepstral coeffi-
cients, we can significantly enhance recognizer perfor-
mance. A summary of the recognizer performance, in each
of the 3 modes in which it was tested, is given in Table
V. Overall string error rates of less than 3 percent for
unknown string lengths and less than 2 percent for known
string lengths were obtained on independent testing sets
of data for both speaker independent and multispeaker
modes. String etror rates of less than 1 percent for un-
known string lengths and less than 0.5 percent for known
string lengths were obtained in the speaker trained case.

These results show that the transitional cepstral infor-
mation made the recognizer relatively robust to talkers.
In another paper, we have shown that the addition of the
delta cepstrum analysis significantly improves perfor-
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TABLE V
SUMMARY OF STRING ERROR RATES FOR THE THREE RECOGNITION MODES

Training Set | Testing Set

Recognition Mode Database | UL KL UL KL
DBS0 0.39 | 0.16 | 0.78 | 0.35

DBS0 1.74 | 0.98 | 2.85 | 1.65

| Speaker Trained

Multi-speaker
(6 Models Per Digit)

Speaker Independent DBTI 1.24 | 0.36 | 2.94 | 1.75

(4 Models Per Digit)

mance with other vocabularies (e.g., the alphabet) in iso-
lated word recognition tasks [21].

To see how much progress has been made, it is worth-
while contrasting the results presented here with those of
earlier studies. In earlier work, using the same databases
and recognizer, but with a standard instantaneous cepstral
analysis (i.e., without the transitional cepstral informa-
tion), Rabiner er al. reported testing set string error rates
of 1.83 percent (UL), and 0.81 percent (KL) in the speaker
trained mode, and 6 percent (UL) and 3.4 percent (KL)
in the multispeaker mode (using 10 models per digit as
opposed to 6 models per digit here ). The string error rates
reported here are lower by a factor of 2 or more! Further-
more, in the speaker independent mode, the results [22]
obtained for the testing set were string error rates of 7.9
percent (UL) and 5.2 percent (KL), again using 10 models
per digit. Here the string error rates are lower by a factor
of about 3 to 1, based on 4 models per digit. These com-
parisons strongly point out the advantages of the transi-
tional cepstral information for recognition.

The only other comparison worth making is with the
work of Bush and Kopec [5] who also used the TI data-
base for their recognition tests. The best performance re-
sults on the testing set, obtained by Bush and Kopec, were
4 percent (UL) and 3 percent (KL) string error rates. The
Bush and Kopec results were based on digit models de-
rived from acoustic-phonetic knowledge, using wider
bandwidth spectral analysis, with a network representa-
tion that handled some difficult cases (e.g., prepausal
“‘oh’’ or eight), and with an explicit background silence
model. The results given here were obtained fully auto-
matically, using telephone bandwidth data, with no ex-
plicit silence model, and with no rules or corrections for
difficult digit sequences.

V. SUMMARY

In this paper we have shown that a very high perfor-
mance connected digit recognition system can be imple-
mented automatically based on our current understanding.
The key to the improvement in performance over earlier
implementations was the use of an analysis that included
both instantaneous and transitional (time derivative) spec-
tral information. The system was tested in three modes,
namely, speaker trained, multispeaker, and speaker in-
dependent, and shown to be capable of recognizing digit
strings with greater than 97 percent accuracy in all cases.
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