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Speech Recognition in Machines

Over the past several decades, a need has arisen to enable
humans to communicate with machines in order to control
their actions or to obtain information. Initial attempts at
providing human-machine communications led to the
development of the keyboard, the mouse, the trackball, the
touch-screen, and the joystick. However none of these com-
munication devices provides the richness or the ease of use
of speech, which has been the most natural form of com-
munication between humans for tens of centuries. Hence a
need has arisen to provide a voice interface between
humans and machines. This need has been met, to a limited
extent, by speech-processing systems that enable a machine
to speak (speech synthesis systems) and that enable a
machine to understand (speech recognition systems) human
speech. We concentrate on speech recognition systems in
this section.

Speech recognition by machine refers to the capability of
a machine to convert human speech to a textual form, pro-
viding a transcription or interpretation of everything the
human speaks while the machine is listening. This capabil-
ity is required for tasks in which the human is controlling
the actions of the machine using only limited speaking
capability, such as while speaking simple commands or
sequences of words from a limited vocabulary (e.g., digit
sequences for a telephone number). In the more general
case, usually referred to as speech understanding, the
machine need only reliably recognize a limited subset of the
user input speech—namely, the parts of the speech that
specify enough about the action requested so that the
machine can either respond appropriately or initiate some
action in response to what was understood.

Speech recognition systems have been deployed in appli-
cations ranging from control of desktop computers, to tele-
communication services, to business services.

The earliest approaches to speech recognition were based
on finding speech sounds and providing appropriate labels
to these sounds. This is the basis of the acoustic-phonetic
approach (Hemdal and Hughes 1967), which postulates that
there exist finite, distinctive phonetic units (phonemes) in
spoken language and that these units are broadly character-
ized by a set of acoustic properties that are manifest in the
speech signal over time. Even though the acoustic properties
of phonetic units are highly variable, both with speakers and
with neighboring sounds (the so-called coarticulation ef-
fect), it is assumed in the acoustic-phonetic approach that
the rules governing the variability are straightforward and
can be readily learned (by a machine).

The first step in the acoustic-phonetic approach is a spec-
tral analysis of the speech combined with a feature detection
that converts the spectral measurements to a set of features
that describe the broad acoustic properties of the different
phonetic units.

The next step is a segmentation and labeling phase in
which the speech signal is segmented into stable acoustic
regions, followed by attaching one or more phonetic labels
to each segmented region, resulting in a phoneme lattice
characterization of the speech. The last step in this approach

attempts to determine a valid word (or string of words) from
the phonetic label sequences produced by the segmentation
to labeling. In the validation process, linguistic constraints
on the task (i.e., the vocabulary, the syntax, and other
semantic rules) are invoked in order to access the lexicon for
word decoding based on the phoneme lattice. The acoustic-
phonetic approach has not been widely used in most com-
mercial applications.

The pattern-matching approach (Itakura 1975; Rabiner
1989; Rabiner and Juang 1993) involves two essential
steps—namely, pattern training and pattern comparison.
The essential feature of this approach is that it uses a well-
formulated mathematical framework and establishes con-
sistent speech-pattern representations, for reliable pattern
comparison, from a set of labeled training samples via a for-
mal training algorithm. A speech-pattern representation can
be in the form of a speech template or a statistical model
(e.g., a HIDDEN MARKOV MODEL or HMM) and can be
applied to a sound (smaller than a word), a word, or a
phrase. In the pattern-comparison stage of the approach, a
direct comparison is made between the unknown speech
(the speech to be recognized) with each possible pattern
learned in the training stage in order to determine the iden-
tity of the unknown according to the goodness of match of
the patterns. The pattern-matching approach has become the
predominant method of speech recognition in the last
decade.

The artificial intelligence approach (Lesser et al. 1975;
Lippmann 1987) attempts to mechanize the recognition pro-
cedure according to the way a person applies intelligence in
visualizing, analyzing, and characterizing speech based on a
set of measured acoustic features. Among the techniques
used within this class of methods are use of an expert sys-
tem (e.g., a neural network) that integrates phonemic, lexi-
cal, syntactic, semantic, and even pragmatic knowledge for
segmentation and labeling, and uses tools such as artificial
NEURAL NETWORKS for learning the relationships among
phonetic events. The focus in this approach has been mostly
in the representation of knowledge and integration of
knowledge sources. This method has not been used widely
in commercial systems.

A block diagram of a complete system for large vocab-
ulary speech recognition (Lee, Rabiner, and Pieraccini
1992; Jelinek 1985; Baker 1990) based on the pattern-
matching approach is shown in Figure 1. The first step in
the processing is spectral analysis to derive the feature vec-
tor used to characterize the spectral properties of the
speech input. The second step in the recognizer is a com-
bined word-level/sentence-level matching procedure. The
way this is accomplished is as follows. Using a set of sub-
word models (phoneme-like units) along with a word lexi-
con, a set of word models is created by concatenating each
of the subword models as specified by the word lexicon.
The word-level match procedure provides scores for indi-
vidual words as specified by the sentence-level match pro-
cedure (which uses a word grammar—the syntax of the
system) and the semantics (which specifies valid sentences
in the task language). The final result is the sentence that
provides the best match to the speech input according to
the word vocabulary, task syntax, and task grammar.
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Table 1 illustrates current capabilities in continuous
speech recognition for three distinct and rather simple
tasks—namely, database access (Resource Management),
natural language queries (ATIS) for air-travel reservations,
and read text from a set of business publications (NAB).
The task syntax is the system grammar (or language
model) and is realized as one of a finite-state word-pair
grammar, a word-trigram grammar, or a five-gram word
grammar. The systems all run in a speaker independent
(SI) mode with either fluently read speech or naturally
spoken dialogue. 

It can be seen from Table 1 that for tasks with medium
size vocabularies (1000–2500 words) and with language
perplexities (average word-branching factors) significantly
below that of natural language speech (perplexity of 100–
200), word-error rates below 5 are easily obtainable with
modern technology. Such systems could actually be utilized
in limited (controlled) user environments and could be
designed to work rather well. On the other hand, for more
complex tasks like NAB with a 60,000-word vocabulary and
perplexity comparable to that of natural-language speech,
word-error rates exceed 10, thereby making these systems
almost unusable in practical environments.

Speech recognition has been successfully applied in a
range of systems. We categorize these applications into five
broad classes.

1. Office or business systemTypical applications include
data entry onto forms, database management and con-
trol, keyboard enhancement, and dictation. Examples of
voice-activated dictation machines include the IBM
Tangora system and the Dragon Dictate system.

2. Manufacturing ASR is used to provide “eyes-free,
hands-free” monitoring of manufacturing processes
(e.g., parts inspection) for quality control.

3. Telephone or telecommunicationsApplications include
automation of operator-assisted services (the Voice
Recognition Call Processing system by ATT to auto-
mate operator service routing according to call types),
inbound and outbound telemarketing, information ser-
vices (the ANSER system by NIT for limited home-
banking services, the stock-price quotation system by
Bell Northern Research, Universal Card services by
Conversant/ATT for account information retrieval),
voice dialing by name/number (ATT VoiceLine, 800
Voice Calling services, Conversant FlexWord, etc.),
directory-assistance call completion, catalog ordering,
and telephone calling feature enhancements (ATT
VIP—Voice Interactive Phone for easy activation of
advanced calling features such as call waiting, call for-
warding, and so on by voice rather than by keying in the
code sequences).

4. Medical The application is primarily in voice creation
and editing of specialized medical reports (e.g., Kurz-
weil’s system).

5. Other This category includes voice-controlled and
-operated toys and games, aids for the handicap-
ped, and voice control of nonessential functions in
moving vehicles (such as climate control and the
audio system).

For the most part, machines have been successful in rec-
ognizing carefully articulated and read speech. Spontaneous
human conversation has proven to be much more difficult a
task. Recent performance evaluations using speech recorded
off a radio station, as well as from monitoring speech of
family members talking over conventional telephone lines,

Figure 1. Overall  block diagram of
subwork unit-based continuous-speech
recognizer.

Table 1. Performance of continuous-speech recognition systems

Task Syntax Mode Vocabulary

Word 
Error 
Rate

Resource 
Management 

Finite State 
Grammar 

SI
Fluent Read 

1000 
Words

4.4%

Air Travel 
Information 
System 

Backoff Trigram
(Perplexity = 18)

SI
Natural 

Language

2500 
Words

3.6%

North
American 
Business 
(NAB) 
(DARPA)

Backoff 5-gram
(Perplexity = 
173)

SI
Fluent Read 

Input

60000 
Words

10.8%
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shows word-error rates of from 27 to upwards of 50. These
high word-error rates are an indication of how much more
must be learned before machines are truly capable of recog-
nizing human conversational speech. 

See also NATURAL LANGUAGE GENERATION; NATURAL
LANGUAGE PROCESSING; SPEECH PERCEPTION; SPEECH SYN-
THESIS

—Lawrence Rabiner
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Speech Synthesis

The history of “speaking machines” goes back at least to the
work of Wolfgang von Kempelen in 1791, but until the
advent of the digital computer all such devices required a
human operator to “play” them, rather like a musical instru-
ment. Perhaps the best known machine of this sort was
Homer Dudley’s VODER, which was demonstrated at the
1939 World’s Fair.

Modern speech synthesis programs, of course, can pro-
duce speechlike output on the basis of symbolic input, with
no further intervention. When the symbolic input to such a
program is ordinary text, the program is often called a text-
to-speech (TTS) system. Most TTS systems can be viewed
as having two fairly distinct halves: a first stage that ana-
lyzes the text and transforms it into some form of annotated
phonetic transcription, and a second stage, which is often
thought of as synthesis proper, which produces a sound
wave from the phonetic transcription.

Programs that generate their own sentences, for example,
automated information systems, can produce synthesizer
input directly and avoid the difficulties of textual analysis.
There was, at the beginning of 1998, no standard format for
synthesizer input, and most systems have their own ad hoc
notations. There is a move toward the development of stan-
dardized speech markup languages, on the model of text
markup languages like LaTex and HTML, but considerable
work remains to be done.

Text analysis in TTS systems serves two primary pur-
poses: (1) specifying the pronunciations of individual words
and (2) gathering information to guide phrasing and place-
ment of pitch accents (see PROSODY AND INTONATION).

Word pronunciations can be looked up in dictionaries,
generated by spelling-to-sound rules, or produced through a
combination of the two. The feasibility of relying on spelling-
to-sound rules varies from language to language. Any lan-
guage will need at least a small dictionary of exceptions.
English spelling is sufficiently problematic that current prac-
tice is to have a dictionary with tens of thousands—or even
hundreds of thousands—of entries, and to use rules only for
words that do not occur in the dictionary and cannot be
formed by regular morphological processes from words that
do occur. Systems vary in the extent to which they use mor-
phology. Some systems attempt to store all forms of all words
that they may be called on to pronounce. The MITalk system
had a dictionary of orthographic word fragments called
“morphs” and applied rules to specify the ways in which their
pronunciations were affected when they were combined into
words.

The parsing and morphological analysis (see NATURAL
LANGUAGE PROCESSING and MORPHOLOGY) techniques used
in text processing for text-to-speech are similar to those
used elsewhere in computational linguistics. One reason for
parsing text in text-to-speech is that the part of speech
assignment performed in the course of parsing can disam-
biguate homographs—forms like the verb to lead and the
noun lead, or the present and past tenses of the verb to read,
which are spelled the same but pronounced differently. The
other main reason is that it is possible to formulate default
rules for placement of pitch accents and phrase boundaries
on the basis of syntax. On the basis of such rules, markers
can be placed in the annotated phonetic output of the text
analysis stage that instruct the synthesis component to vary
vocal pitch and introduce correlates of phrasing, such as
pauses and lengthening of sounds at the ends of phrases.
Such default rules tend to yield the rather unnatural and
mechanical effect generally associated with synthetic
speech, and improving the quality of synthetic prosody is
one of the major items on the research agenda for speech
synthesis.

Synthesis proper can itself be broken into two stages, the
first of which produces a numerical/physical description of
a sound wave, and the second of which converts the descrip-
tion to sound. In some cases, the sound is stored in the com-
puter as a digitized wave form, to be played out through a
general purpose digital to analog converter, whereas in other
cases, the numerical/physical description is fed to special
purpose hardware, which plays the sound directly without
storing a waveform.


