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Abstract—Placing multiple voltage regulators onto the die is an
effective way of enabling distributed on-chip voltage regulation
and provides significant benefits in suppressing various types of
power supply noise. However, the complex interactions between
the active voltage regulators and the large passive subnetwork
may render the complete power delivery network (PDN) unstable,
leading to design failures. While traditional stability measures
such as phase margin are not applicable to regulated PDNs that
have a large number of loops, a brute-force analysis of network
stability can be impractical due to the high complexity of a given
PDN. We present a hybrid stability margin concept and the
associated stability-checking method for PDNs with integrated
linear low-dropout voltage regulators (LDOs). With theoretical
rigor, the proposed approach is local in the sense that the stability
of the entire network can be efficiently examined through a
hybrid stability constraint that is defined locally for individual
LDOs. In the same spirit, we propose a localized LDO design
methodology that optimizes individual LDOs in a stand-alone
manner while ensuring the network-level stability. Key circuit-
level design considerations and tradeoffs involved in stability-
ensuring LDO design are also discussed.

Index Terms—Low-dropout voltage regulator (LDO), dis-
tributed on-chip regulation, passivity, power delivery, stability.

I. Introduction

ON-CHIP integration of voltage regulators and converters
has emerged as a promising means to address many IC

power delivery challenges [1], [9], [11]. It is well known that
on-chip voltage regulation reduces both static and dynamic
supply voltage droops and also helps suppress the resonance
caused by package inductances. Moreover, placing multiple
regulators, e.g., low-dropout voltage regulators (LDOs), close
to heavy noise sources on the die in a distributive manner
(as illustrated in Fig. 1) can further maximize the benefit of
localized regulation [4], [14], [13].

While integrating multiple on-chip voltage regulators to fa-
cilitate distributed active regulation is appealing and represents
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Fig. 1. Illustration of the PDN with distributed on-chip regulators.

a significant ongoing design trend, a potential roadblock, the
concern on instability, also arises. While stability is largely
a nonproblem in traditional passive power distributions, the
regulatory nature of active voltage regulators can indeed render
the power delivery network (PDN) unstable. An unstable PDN
can manifest itself with sustained supply voltage oscillations,
which may cause severe degradation of circuit performance
or even chip operation failure. But the understanding of
the stability of the network is very challenging due to the
complex interactions between multiple active regulators and
the immense size of the passive RLC subnetwork.

Traditional small-signal stability analysis methods, as com-
monly employed in the standard LDO design process, are
incapable of addressing the above challenge; they are either
unable to capture the effects of inter-regulator loops, a key
characteristic of multi-LDO-regulated PDNs or computation-
ally intractable for PDNs with a practical size. Phase/gain
margins are commonly used by analog designers for checking
the small-signal stability of analog circuits including LDOs.
However, these methods are single-loop-based, i.e., it is as-
sumed that there exits only one dominant (outer) loop in the
design and the stability analysis only pertains to this loop. In
practice, phase or gain margins are computed mostly when the
circuit is loaded with a simple lumped capacitor. In this paper,
we show that the use of phase margin can lead to completely
misleading prediction of the stability of PDNs regulated by
distributed LDOs.

On the other hand, in theory, the small-signal stability of a
PDN may be thoroughly detected by finding the existence of
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any right half-plane (RHP) poles of the closed-loop system.
However, this has a computational cost that is cubic in the
size of the PDN and is impractical for practical designs. The
computational complexity exacerbates in an iterative design
process in which LDOs may be tuned multiple times before
it is finally pinned down.

It is pressing to develop localized and computationally
tractable network stability checking and by building upon it
establish a practical regulator design approach in the above
application. One of our previous papers [15] presented a
preliminary work to conquer these challenges.

In this paper, we first present a modeling and partitioning
strategy of the PDN to describe the system-wide feedback
loops in the PDN, making it possible to reason about stability
while tracking the interactions between the LDOs and the
passive RLC subnetwork. Putting the proposed approach on
a firm theoretical footing, we then adopt and extend the
recently emerged hybrid stability theory (HST) [5], developed
originally for multivariable robust control, to examine the
stability of PDNs with multiple LDOs. We rigorously prove
that under a set of practical conditions, a PDN is guaranteed
to be stable. The use of HST allows us to combine the
notions of small gain (of system-level loops) and passivity
(of individual regulators) to impose more relaxed sufficient
conditions for guaranteeing the network stability. Moving one
step further, we leverage our HST framework to achieve the
goal of localized stability checking. That is, with one time
AC simulation of the passive subnetwork, the stability of the
complete PDN can be determined by locally characterizing
the gain and the passivity of individual LDOs. While the
passivity of analog circuits and gains of system-level loops are
unfamiliar concepts to typical analog designers, we show how
these properties may be leveraged to render feasible stability
checking of a given large PDN and empower practical iterative
LDO design in a typical analog design flow.

Apart from stability checking, the second key objective of
this paper is to develop localized LDO design techniques and
methodology that guarantee the stability of the PDN while
achieving good power delivery performance. We first define
a hybrid stability margin (HSM) concept that numerically
assesses the network stability and guides the tradeoffs between
stability and other design specifications for the optimization of
LDOs. We show how HSM can be introduced to the standard
LDO design process as one additional stability constraint to fa-
cilitate the goal of localized stability-ensuring design. One key
aspect of the proposed design methodology is the investigation
of circuit-level design techniques, e.g., a proper choice of LDO
topologies, and the introduction of additional design freedoms,
which may lead to the most efficient guarantee of the network
stability and the best tradeoffs with other design specifications.
Based on these developments, we identify transistor-level
regulator design parameters that are key to the system-wide
stability and develop an automated localized LDO design flow
that jointly optimizes several important design specifications
pertaining to stability, voltage regulation, and power efficiency.

Experimentally, we demonstrate that the classical phase
margin approach, when applied to multiregulator PDNs, can
lead to erroneous prediction of network stability, disqualifying
it as a trustworthy network-wide stability metric. Furthermore,

Fig. 2. (a) Generic LDO structure. (b) Two-port Y -parameter model of the
generic LDO.

detailed studies are presented to demonstrate the effective-
ness and efficiency of the proposed design methodology that
provides a rigorous theoretical guarantee for the stability of
several PDNs without any significant degradation of other
LDO performances.

II. Stability Problem

While it is very attractive to apply the distributed on-chip
voltage regulation in a PDN, the stability of the whole system
has to be guaranteed in the first place.

Stability is a general concern for any feedback control
system. For example, Fig. 2(a) depicts a generic LDO cir-
cuit structure which includes a pass transistor whose pass
resistance is dynamically tuned by a negative feedback loop
(referred to as the local loop in the rest of this paper) to
counteract the change of the output voltage (Vreg). As a result,
Vreg can be maintained at a preset value regardless of either
fluctuations of the global supply voltage VDD or variations of
the load current iL . Due to the feedback control, however, the
circuit can be potentially unstable and circuit designers need
to perform stability checking to verify the LDO’s stability.

Unfortunately, it is particularly challenging in the LDO
circuit design phase to guarantee the stability of the entire
large-scale PDN in question, primarily due to the large net-
work size and the complicated interactions among the on-chip
regulators as well as the surrounding passive RLC subnetwork.
The classical stability-checking approaches traditionally used
for regulator design can be categorized into two groups: the
ones that check, via an expensive pole analysis, the existence
of RHP poles of the closed-loop transfer function of a system
and the ones (e.g., phase margin or the Nyquist plot) that
leverage characteristics of the open-loop transfer function of
a system.

The methods in the first group are not applicable to this
multi-LDO PDN design for the following reasons. To search
for RHP poles of the closed-loop transfer function of the
system, an eigenvalue problem needs to be solved at a runtime
cost of O(N3), where N is the number of nodes in the
network. It is even daunting that every time the LDO design is
modified, the eigenvalue problem has to be solved once again.
Considering that the PDNs in practical designs can easily have
millions of circuit nodes, the prohibitive cost involved will
obviously disqualify this type of methods as a practical option.
Another disadvantage is that even if the system’s instability has
finally been identified, designers are usually left with no clue
on how to fix the problem.

The second group of approaches, while perfectly suitable
for single-input and single-output (SISO) systems and widely
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Fig. 3. Illustration of the problem when applying the open-loop methods to
the stability problem under discussion. (a) Traditional stability checking in the
design of a single LDO. (b) Problem illustration when applying the open-loop
method to the PDN.

Fig. 4. Illustration of the inter-LDO loops in the PDN.

adopted by regulator designers, can hardly be applied to the
stability problem under discussion. For example, the classical
phase margin method, inspecting narrowly at the characteris-
tics of the local loop inside an individual LDO as illustrated in
Fig. 3(a), cannot find in the PDN a major loop to open for the
stability analysis, as illustrated in Fig. 3(b). In this scenario,
not only that the LDO under design is also a part of the load to
itself, but there are also multiple inter-LDO feedback loops as
depicted in Fig. 4 which may be accused of causing instability
of the network but are invisible to the method. Therefore, it
makes the stability conclusion given by this type of methods
not reliable anymore.

To further illustrate this point, we adopted a realistic LDO
design [8] as an example. We first designed the LDO in
the traditional manner, achieving a phase margin of about
110° under a typical load capacitor (decap) of about 100
pF and above 40° under a wide range of decap from 1 pF
to 1 nF, which was interpreted as a highly stable design
by the conventional stability-checking method. Interestingly,
we found that when multiple copies of this LDO design
were integrated into a PDN, the entire network was possibly
unstable. To gradually disclose how the stability of the PDN in
this example was destroyed, we examined the network stability
every time we added one more LDO into the PDN. To keep
the loads to each LDO roughly constant as more LDOs were

Fig. 5. Pole analysis results that demonstrate an instability-arousing pole
movement (each cross represents a pole location).

Fig. 6. Transient analysis results that demonstrate the stability problem.

added, the total amounts of decap and load current in the PDN
were increased proportionally with the number of LDOs. As
the size of the power grids in this illustrative example was
intentionally made small (about 20 nodes with the parasitic
grid resistance being a few hundreds of m�), the thorough
pole analysis on the whole network could be applied to check
the stability. The package model given in [18] was adopted
in this example. Fig. 5 demonstrates the problematic pole
movements extracted from the analysis results. It is observed
that as the number of LDOs in the PDN increases, there
are a pair of complex poles moving from the left half of
the s-plane toward the right half-plane (i.e., from the stable
region toward instability), which is further confirmed by the
corresponding transient simulation results shown in Fig. 6
which demonstrates that heavy oscillation of the local supply
voltage (Vreg) occurs when there are four LDOs in the PDN.

The above example clearly shows that achieving a high
phase margin for each stand-alone LDO does not provide any
guarantee for the stability of the integrated network. One of
the major reasons for the phase margin method to fail is the
inappropriate handling of signal loops in the network. The
phase-margin based LDO stability analysis is only positioned
to capture the interaction between one LDO and the rest of
the network. As already pointed out, this treatment is unable
to take the interactions among the LDOs into account. Not
surprisingly, inspecting one LDO at a time while assuming the
rest of the circuit may be modeled as a simple passive load,
as implied in the application of the phase margin method,
can lead to erroneous conclusions about network stability.
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Fig. 7. Partition of the PDN model.

Therefore, building a sensible network model that captures
all stability-endangering signal loops is the first critical step
toward tackling the problem.

III. PDN Partitioning and Modeling

Partitioning is a common practice in the divide-and-conquer
paradigm for solving large complex problems. Toward the goal
of establishing a theoretically rigorous and practically useful
treatment of the stability challenge, we first present an effective
way of partitioning and modeling of the PDN, which facilitates
the identification of a complete set of system-wide signal-flow
loops responsible for the stability of the entire network.

A. Concepts

The PDN can be partitioned in a way to properly account
for all key signal paths at the network level, which contribute
in a significant way to stability. This requires us to move away
from SISO-based approaches as typically adopted by analog
designers and take a multiport-based modeling approach.

Furthermore, partitioning should be done in a way to
facilitate the iterative design process in which network stability
may be checked multiple times as the LDOs are tuned.
Thus, it is highly desirable to detach the bulky passive RLC
subnetwork, which requires a great effort to analyze, from
this iterative design process. This leads us to consider a
partition that separates the passive RLC subnetwork from all
the LDOs, resulting in two multiport subsystems: one that
contains only the regulators and the other comprised merely
of the passive RLC subnetwork serving as the load to the
LDOs. This partitioning strategy has an appealing advantage.
As will be shown later in this paper, it allows us to spend
only a one-time cost to characterize the passive subnetwork
using the AC analysis, based on which stability constraints
that are local to each individual LDOs are extracted prior to
the iterative LDO design process. In the subsequent design
process, these extracted local stability constraints are used to
drive the optimization of each LDO while guaranteeing the
stability of the complete network.

Note that in the proposed partitioning scheme, all the LDOs
are grouped in a single multiport subsystem despite the fact
that their physical locations are spread out. In other words, the
partitioning is done not based on physical vicinity, rather to
electrically separate the LDOs from the passive subnetwork.

B. Proposed Network Partition and Modeling

The proposed partition of the PDN with n on-chip LDOs
is illustrated in Fig. 7, where the dashed lines represent the
partition boundaries and the two subsystems are, respectively,
represented by block G that only contains the LDOs and
the passive subnetwork Z which is enclosed in the U-shaped
dashed box. Between G and Z, there are two types of
interfaces corresponding to the VDD ports and Vreg ports of
the LDOs. Therefore, for n on-chip LDOs in the PDN, each
subsystem has 2n interfacing ports. Besides the interfacing
ports, block Z is also connected to both the PDN’s excitation
inputs, which are the variations of the load currents iL and the
whole system’s outputs, which can be any nodal voltages of
interest on the power grids (Vobsv).

As the LDOs are commonly linearized and in order to utilize
the signal-flow graph, we model the LDO block by a 2n-port
Y-parameter model with each LDO described by the 2 × 2
Y -parameter matrix shown in Fig. 2(b). The transfer matrix of
block G is then given by
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(1)

where ij,k (j = 1, 2; k = 1, . . . , n) represents the jth
port current of the kth LDO, and similarly vj,k is its port
voltage.

It is worth noting that because of the way in which block
G is constructed, the LDOs are isolated to each other; accord-
ingly, the matrix G2n×2n is block-diagonal with the ith block
being the 2 × 2 Y -parameter matrix of the ith LDO, as can
be observed from (1). The computational benefit from this
property will be discussed in Section V.

The PDN then can be abstracted into a block diagram of
a feedback control system shown in Fig. 8(a), where block
G interfaces with block Z through 2n voltage signals and
2n current signals. Furthermore, the excitation inputs and the
outputs can be removed for the stability analysis because for
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Fig. 8. PDN modeling with the system-wide feedback loop. (a) Complete
PDN model with system inputs and outputs. (b) PDN model reduced to contain
only signals pertaining to the stability issue.

LTI systems, stability is an intrinsic property regardless of
external system inputs or outputs. Thereby during the stability
analysis, block Z can be reduced into block H which only
retains the interfacing ports with G. By modeling H with
a 2n-port Z-parameter model whose inputs are 2n currents
(iH ) with the outputs being 2n voltages (vH ), we simplify the
system model into the one as shown in Fig. 8(b), to which
stability theory can be readily applied.

By modeling the LDO block and the passive subnetwork
in the above way, the system’s signal-flow graph can be built
as shown in Fig. 9, where every electrical quantity (i.e., a
current or voltage) or a “node” is only dependent on the upper
stream node. Therefore, when we partition as illustrated by
the dash-dotted line in Fig. 9, the output signals of the two
partitions, namely iG and VH , are, respectively, determined
only by the corresponding inputs (namely VG and iH ) as well
as the partition transfer matrices G2n×2n and H2n×2n. In this
way, the stability evaluation of the LDO block can be confined
within the partition itself without any overlook of loading
effect between the two partitions, which is important to the
rigorousness of our method.

From Fig. 9, the system-wide multivariable feedback loop
is identified starting from the inputs (iH ) of block H to its
outputs (VH ), which are directly fed to block G, and the loop
finally ends at the outputs (iG) of G. As the positive directions
of port currents are defined as flowing into the corresponding
blocks, iG and iH are of the same magnitude but the opposite
directions, i.e., the loop is a negative feedback.

IV. Theoretical Framework

Toward a rigorous theoretical guarantee rather than an em-
pirical educated guess about the PDN stability, in this section,
we lay out the development of the theoretical framework
that is not only suitable for effective and efficient stability
checking, but offers more flexibility for achieving superior
system performance.

An ideal stability-checking method should have the
following desirable properties: 1) it should be able to handle
multi-input and multioutput (MIMO) feedback systems such
as the one in Fig. 8(b); 2) it needs to avoid or at least greatly
reduce the analysis cost associated with the large passive
network (block H) in order to be computationally efficient;
3) the stability conditions adopted in the method shall not
lead to poor system performance.

Based on the above discussion, the use of a combination of
passivity and small-gain principles offers an appealing solution
to the stability problem at hand. This approach goes naturally

Fig. 9. Signal-flow graph of the system. (i1,G, i2,G, V1,G, V2,G and
i1,Z, i2,Z, V1,Z, V2,Z are the same as in Fig. 7.)

with the network partitioning presented in the previous section
and facilitates a localized checking methodology. Prior to
delving into this theoretical framework, we first introduce
several key concepts and relevant mathematical backgrounds
[3], [5], [12], followed by the theoretical framework we
specifically developed for the targeted PDNs.

A. Preliminaries

The stability concerned in this paper is referred to as
signal convergence in terms of the norm in the L2-space. The
L2-space is the space of square-integrable functions defined
by L2 =

{
v : R+ �→ R

m| ∫ ∞
0 vT(t) v( t) dt < ∞}

, where v is
an arbitrary vector function of time and vT is its transpose.
The L2-space is a Hilbert space, where the inner product
defines the norm

〈w, v〉 =
∫ ∞

0
wT(t) v(t) dt, ‖v‖2 =

√
〈v, v〉 (2)

where v ∈ L2, w ∈ L2, and 〈·, ·〉 is the inner product.
Definition 1: (System gain) Consider a general square sys-

tem with an input w(t) ∈ L2 and an output y(t)∈ L2 mapped
through an operator M : L2 → L2, the induced L2-gain, or
simply the system gain, is defined by

γ = sup
∀w∈L2,w
=0

‖y‖2/‖w‖2. (3)

A system possesses finite gain if there exists 0 < γ < ∞ such
that

γ〈w, w〉 ≥ γ−1〈y, y〉, ∀w ∈ L2. (4)

For any LTI system, the induced L2-gain is equivalent to the
H∞-norm of the system transfer matrix, M, which is defined
by ‖M‖∞ = max

0≤ω<∞
‖M(jω)‖2, and

‖M(jω)‖2 = max
i

[λi(MH(jω)M(jω))]
1
2 (5)

where λi(M) denotes the ith eigenvalue of M and MH denotes
the complex conjugate transpose of M.

Definition 2: (Passive systems) A general square system
with an input w(t) ∈ L2 and an output y(t) ∈ L2 mapped
through the operator M : L2 → L2 is passive if there exist
constants δ ≥ 0 and ε ≥ 0 such that ∀w,

〈w, y〉 ≥ δ〈w, w〉 + ε〈y, y〉. (6)

Furthermore, if δ > 0, then the system is called input strictly
passive; if ε > 0, then the system is output strictly passive;
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the system is very strictly passive if both δ > 0 and ε > 0.
Based on (3) and (4), it can be easily derived that a system
that is already input strictly passive with finite gain is output
strictly passive, and hence is very strictly passive.

The passivity of LTI systems can also be examined in the
frequency domain. Consider that M is an LTI system which
has a minimal realization that is asymptotically stable; then,
we have [3]:

1) M is passive if and only if its transfer matrix satisfies
M(jω) + MT(−jω) ≥ 0, ∀ω ∈ R;

2) M is input strictly passive if and only if its transfer matrix
satisfies that ∃δ > 0, M(jω) + MT(−jω) ≥ δI, ∀ω ∈ R, i.e., all
eigenvalues of M(jω) + MT(−jω) are greater than or equal to
δ.

Unfortunately, for many systems, a passive input–output
map defined by (6) does not always exists. When a system’s
passive input–output relationship does not hold for a certain
input case, we say that passivity violation occurs. In particular,
for LTI systems, if there exists a frequency ω where the
condition M(jω) + MT(−jω) ≥ 0 is not met, then passivity
violation occurs.

On the other hand, we also define the passiveness of the
system with passivity violations as local passivity. Before
rigorously defining it, we first define a passivity filter A:L2 →
L2, which is a causal convolution operator; also, we define
A = AI, where I represents the identity matrix.

Definition 3: (Local passivity) A general square system
with an input w(t) ∈ L2 and an output y(t) ∈ L2 mapped
through the operator M : L2 → L2 is locally passive, if there
exists a passivity filter A and constants δ ≥ 0 and ε ≥ 0, such
that 〈Aw,Ay〉 ≥ δ〈Aw,Aw〉 + ε〈Ay,Ay〉. (7)

If ∃δ > 0, and ε > 0 that satisfy (7), the system is referred to
as locally very strictly passive.

For LTI systems, denoting the frequency set where the
system meets the passivity condition by � � {ω ∈ R|M(jω) +
MT(−jω) ≥ 0}, we define a frequency-dependent function
α(ω):R→ {0, 1} as [5]

α(ω) =

{
1, ω ∈ �

0, otherwise.
(8)

Let A(s)A(−s) be the spectral factorization of the Laplace
transform of the inverse Fourier transform of α(ω). Then, we
have

α(ω) = A(jω)A(−jω). (9)

Furthermore, the time domain equivalent to A(s) is a causal
convolution operator A:L2 → L2, referred to as the frequency
selection operator in the rest of this paper. Obviously, A can
be a passivity filter for LTI cases. Again, A is also defined ac-
cordingly and has its Fourier transformation A(jω) = A(jω)I.
Note that if an LTI system is passive, then it is locally passive
with respect to any � including � = {ω|ω ∈ R}.

B. Two Classical Stability Theorems

Considering the Barkhausen oscillation conditions, it is
intuitive that if the loop gain of a feedback system is less
than 1, then any oscillation through the loop will finally be
attenuated and hence the system remains stable. The intuition

leads us to the small-gain theorem, a classical stability theorem
for general feedback systems.

Given the feedback system in Fig. 8(b) and the system gain
defined by (3), the small-gain theorem states the following
result [12].

Theorem 1: (Small-Gain theorem) The negative feedback
interconnection of the subsystems G:L2 → L2 and H:L2 →
L2 is L2-stable if the product of the gains of the two subsys-
tems is strictly less than 1.
That is, the whole system is L2-stable as long as γGγH < 1,
where γG and γH are, respectively, the gain of blocks G and
H. As such, the theorem allows γG and γH to be separately
evaluated through (5). Therefore, if one subsystem is fixed
(as the passive subnetwork) while the design of the other
one is in process (as the LDOs), the gain evaluation on the
fixed subsystem can be done once for all and be used to
assist the iterative design of the other subsystem. Thus, the
stability of the entire system can be checked locally on the
other subsystem.

The small-gain theorem, however, utilizing merely gain
information of the subsystems, tends to give a Pyrrhic victory
for ensuring stability. This is because one of the subsystems
(e.g., the passive subnetwork in our case) once has a very high
gain at any operational frequencies of interest, the other one
(e.g., the LDO block) would be mandated by the theorem to
have a rather low gain, resulting in poor closed-loop system
performance.

In addition to exploiting the characteristics of system gains
of the subsystems, another property that LDO designers may
easily resort to is the phase information of the open-loop trans-
fer function of an SISO system. For MIMO systems, passivity
can be deemed, in some sense, as a quantity that correlates
with the phase information of the system transfer matrix.
Thus, as we are trying to relax the harsh constraint on the
gains (performance) imposed by the small-gain theorem, the
passivity property is considered as another avenue to ensure
stability.

The passivity theorem states the following useful result for
the system in Fig. 8(b) [12].

Theorem 2: (Passivity theorem) The negative feedback in-
terconnection of the subsystems G:L2 → L2 and H :L2 → L2

is L2-stable if one system is passive while another is very
strictly passive.
The theorem implies that the whole system is L2-stable if
both εG ≥ 0, δG ≥ 0 and εH > 0, δH > 0, where εG and δG,
respectively, represent the ε and δ of block G as defined in (6),
so do εH and δH of block H. Similar to the small-gain theorem,
the passivity of each subsystem can also be checked separately.

While a system with only passive elements is necessarily
passive, a system containing active elements cannot usually be
passive. Therefore, the passivity theorem alone cannot be the
silver bullet either. In fact, it is more often the case that analog
circuits (such as regulators) behave like a passive system over
a certain frequency range, suggesting potential good use of
local passivity for ensuring stability.

C. Hybrid Stability Theorem

Recently, stability theories that simultaneously exploits
small-gain and passivity properties of a general system have
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emerged [5], [6]. In particular, a hybrid stability theorem has
been proposed to make use of the local passive behaviors. If a
general system has passivity violations, the finite gain property
is instead exploited for stability by the following theorem [5].

Theorem 3: (Hybrid stability theorem) The negative feed-
back interconnection of the subsystems G:L2 → L2 and
H :L2 → L2 is L2-stable if the following three conditions
are met: 1) ∃εG ≥ 0, δG ≥ 0 and ∃εH ≥ 0, δH ≥ 0, such that
G and H are both locally passive with respect to a common
passivity filter A; 2) εG + δH > 0 and εH + δG > 0; 3) when
passivity violation occurs, γGγH < 1 holds.
While providing a sufficient condition for stability, Theorem 3
nevertheless offers much greater design freedom in achieving
superior closed-loop performance by combining the two pre-
vious basic stability theorems.

D. Hybrid Stability Framework for PDNs

Based upon the above general stability theory, we develop
a specific hybrid stability framework for PDNs. The proposed
framework is based on the following two key observations
of any realistic PDN of our concern. LDOs are connected
to the passive subnetwork (e.g., the global VDD grids and
the regulated power grids in Fig. 7) through resistive metal
wires and vias, which contribute to non-zero input serial
resistance of the corresponding ports of the passive subnetwork
as illustrated by the resistors r1 . . . r2n in Fig. 10. Note that
the impedance model of the passive subnetwork is denoted
as block H in the figure. Furthermore, the system gain of the
passive subnetwork in a realistic PDN, i.e., ‖H(jω)‖∞, cannot
reach infinity, i.e., it is always upper bounded.

By virtue of the above observations, we derive the following
important property of the passive subnetwork in such a PDN.

Property 1: The passive subnetwork of Fig. 10 is very
strictly passive.

Proof: According to Definition 2, we would like to
show that for the realistic passive subnetwork H:iH(t) ∈
L2 → vH(t) ∈ L2, ∃εH > 0 and δH > 0, such that
〈iH(t), vH(t)〉 ≥ εH〈iH(t), iH(t)〉 + δH〈vH(t), vH(t)〉.

To begin with, we know that 2〈iH(t), vH(t)〉 =
{〈iH(t), vH(t)〉 + 〈vH(t), iH(t)〉}, which, by Parseval’s theorem,
is equivalent to the expression

1

2π

∫ ∞

−∞
iH(jω)[H(jω) + HT(−jω)]i(jω)dω. (10)

As well known that an LTI RLC network is passive [10], the
matrix H(jω) + HT(−jω) is therefore positive semidefinite. If
we denote the passive network excluding those input resistors
ri (i = 1, . . . , 2n) by H̃, then H̃ is also passive. From Fig. 10,
it can be easily inspected that

vH =

⎡
⎢⎣

v1
...

v2n

⎤
⎥⎦ =

⎡
⎢⎣

v
′
1
...

v
′
2n

⎤
⎥⎦ + R

⎡
⎢⎣

i1
...

i2n

⎤
⎥⎦ = (H̃ + R)iH (11)

Fig. 10. Illustration of serial resistances at each port of the H block.

where R= diag{r1, . . . , r2n}, where ri ∈ R+ (i = 1, . . . , 2n).
Then, we have H(jω) + HT(−jω) = H̃(jω) + H̃

T
(−jω) + 2R.

Therefore, for ∀X ∈ R2n and X 
= 0, we have

XH
[
H(jω) + HT(−jω)

]
X

= XH
[
H̃(jω) + H̃

T
(−jω) + 2R

]
X

= XH
[
H̃(jω) + H̃

T
(−jω)

]
X︸ ︷︷ ︸

≥ 0

+ XH(2R)X︸ ︷︷ ︸
> 0

≥ min
k=1,... ,2n

{2rk}XHX

> 0.

(12)

Since H(jω) + HT(−jω) is continuous with respect to ω

and, according to (12), is positive definite, there exists lmin =
inf
ω∈R

λ(H(jω) + HT(−jω)) > 0, where λ(·) means the minimum

eigenvalue. Also since ‖H(jω)‖∞ is upper bounded, smax =
sup
ω∈R

‖H(jω)‖2 exists. Hence by selecting ε > 0 and δ > 0 that

meet the inequality

lmin ≥ ε + δs2
max > 0 (13)

we have
1

2π

∫ ∞
−∞ iH(jω)[H(jω) + HT(−jω)]i(jω)dω

≥ lmin
2π

∫ ∞
−∞ iH(jω)i(jω)dω

≥ 1
2π

(ε + δs2
max)

∫ ∞
−∞ iH(jω)i(jω)dω

≥ 1
2π

ε
∫ ∞

−∞ iH(jω)i(jω)dω

+ 1
2π

δ
∫ ∞

−∞ iH(jω)HT(−jω)H(jω)i(jω)dω

≥ 1
2π

ε
∫ ∞

−∞ iH(jω)i(jω)dω + 1
2π

δ
∫ ∞

−∞ vH(jω)v(jω)dω.

(14)

That is, ∃εH = ε/2 > 0 and δH = δ/2 > 0, such that
〈iH(t), vH(t)〉 ≥ εH〈iH(t), iH(t)〉 + δH〈vH(t), vH(t)〉.

Based on Theorem 3 and Property 1, we come up with the
following corollary that serves directly as the theoretical foun-
dation for the proposed localized stability-checking method
as well as the automated stability-aware system optimization
presented in the next sections.

Corollary 1: The feedback interconnection of a subsystem
G:L2 → L2 and a very strictly passive subsystem H is L2-
stable if at ∀ω ∈ R, either one of the following two conditions
is met: 1) γG (jω)γH (jω) < 1; 2) G(jω) + GT(−jω) ≥ 0.
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Proof: Apparently, when applying Corollary 1 to our de-
sign scenario, the passive subnetwork would be the subsystem
H according to Property 1, and the LDO block would be the
subsystem G. If the first condition (i.e., γGγH < 1) is met,
then there is no need for block G to be locally passive as
prescribed by Theorem 3. To prove this corollary, we only need
to show that if the transfer matrix G(s) satisfies the second
condition (i.e., G(jω) + GT(−jω) ≥ 0) over some frequency
range �, then there exist εG ≥ 0, and δG ≥ 0, such that block
G is locally passive with respect to �. On the other hand,
according to Property 1, block H is locally very strictly passive
with respect to �. Therefore, there exist εH > 0 and δH > 0
satisfying εG + δH > 0 and εH + δG > 0.

Given the transfer matrix G(s), define a frequency set � �
{ω ∈ R|G(jω) + GT(−jω) ≥ 0} and the corresponding α(ω)
as well as the corresponding frequency selection operator A.
We define the convolution operator G:vG(t) ∈ L2 → iG(t) ∈
L2 that corresponds to G(s). Then, according to the positive
semidefiniteness of G(ω) + GT(−ω), for ∀vG(t) ∈ L2, we have

1

2π

∫
�

vH
G(jω)

[
G(ω) + GT(−ω)

]
vG(jω)dω ≥ 0. (15)

By introducing α(jω) into the integral to convert the integra-
tion range to be from −∞ to +∞, (15) is turned into

1

2π
[
∫ ∞

−∞
vH

G(jω)GH(ω)(α(ω)I)vG(jω)dω

+
∫ ∞

−∞
vH

G(jω)(α(ω)I)G(ω)vG(jω)dω] ≥ 0. (16)

By substituting (9) for α(jω) into (16) and by Parseval’s
theorem, we get

〈AvG(t),AGvG(t)〉 + 〈AGvG(t),AvG(t)〉
= 2〈AvG(t),AGvG(t)〉 ≥ 0 (17)

i.e., ∃εG ≥ 0 and δG ≥ 0, such that 〈AvG(t),AiG(t)〉 ≥
εG〈AvG(t),AvG(t)〉 + δG〈AiG(t),AiG(t)〉 ≥ 0.

With the theoretical foundation built, in the next section, we
demonstrate how to perform stability checking for the PDN
based on Corollary 1.

V. New HSM Concept and Efficient Stability

Checking of the PDN

Based on the hybrid stability theorem and the corollary,
we come up with a rigorous and efficient stability-checking
method. We further propose a new HSM that assesses the
system’s stability, such that the stability-checking method can
be incorporated into an automated optimization flow. The
computational cost of the method is also analyzed.

A. Stability Checking of the PDN

The stability of the entire PDN is examined according
to a frequency-sampling approach. Given a set of P points
ωk, k = 1, . . . , P sampled in the frequency range of inter-
est, the passivity and gain conditions are evaluated at each
frequency ωk. If for all frequencies at least one condition is
satisfied, then the stability of the system is guaranteed.

1) Passivity Evaluation: Given a total number of n LDOs
in the network, the passivity of the LDO block at ωk is
evaluated by finding the smallest eigenvalues of the 2n × 2n

matrix G(jωk)+GH (jωk).
More efficiently, the evaluation can be performed on one

LDO at a time, thanks to the fact that the transfer matrix G
is block-diagonal, a feature of the LDO model mentioned in
Section III-B. The 2×2 admittance matrix of the jth LDO is
denoted as Yj(j = 1, . . . , n). Therefore, the passivity of G is
evaluated by finding the value λmin(jωk) given by

λmin(jωk) = min
i=1,2;j=1,...,n

{λi(Yj(jωk) + YH
j (jωk))}. (18)

If λmin(jωk) ≥ 0, the LDO exhibits passivity at ωk; otherwise,
passivity violation occurs.

Note that there is no need to perform such a passivity check
for the large-scale passive load subnetwork.

2) System Gain Evaluation: To decouple the design of
LDO from the passive network, the evaluations of the L2-gain
of the two subsystems are separately performed and inequality
‖G‖‖H‖ < 1 is targeted. At ωk, ‖G(jωk)‖2 and ‖H(jωk)‖2

are first calculated using (5). Again, as G is block-diagonal,
‖G(jωk)‖2 can be obtained by

‖G(jωk)‖2 = max
j=1,...,n

‖Yj(jωk)‖2 (19)

where ‖Yj(jωk)‖2 is the jth block corresponding to the jth
LDO.

If ‖G(jωk)‖2‖H(jωk)‖2 < 1, then the system passes our
stability checking at ωk.

3) Cost of Evaluation: Due to the small size of the LDO
circuit, the cost of the passivity and gain evaluation for each
LDO is very low. The overall cost of evaluation is dominated
by the evaluation of the gain of the large passive load network
‖H(jωk)‖2, which involves an AC analysis to determine the
transfer matrix H(jω) at ωk.

Given that the total number and locations of the LDOs are
predetermined and the passive load subnetwork is fixed, the
evaluation only needs to be done once. Whenever the design
of LDO is tuned, we only need to recompute (18) and (19)
for the stability checking, which is very efficient because of
the small size of the LDO.

If there are P sampling points, n LDOs, and N nodes in
the passive subnetwork, the cost of AC analysis for the passive
subnetwork is O(PNα), given n � N, P � N and typically
α is somewhat greater than 1.0 depending on the sparsity
of the circuit matrices. Note that the AC characterization
of on-chip power grids including the package is routinely
done in existing design flows even for PDNs without on-
chip voltage regulation. In this sense, the proposed stability
checking for regulated PDNs does not incur any significant
additional analysis cost.

B. Hybrid Stability Margin (HSM)

We further define an HSM that integrates the evaluations
of passivity and gain into a single quantitative measure. HSM
can be incorporated as a localized stability constraint into an
automated stability-ensuring LDO design flow, as described in
the next section.
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Fig. 11. HSM at a frequency point.

We first define the HSM on an individual frequency basis.
In Fig. 11, the horizontal axis represents ‖G(jωk)‖2‖H(jωk)‖2

and the vertical axis represents λmin(jωk). Based on the
evaluation of gain and passivity, an LDO design can be
represented by a point in the plane. According to the hybrid
stability theorem, the stability-guaranteed region is the band
area 0 <‖G‖2‖H‖2< 1 in union with the quadrant where
λmin > 0. The border of the region is depicted with the bold
solid lines.

The hybrid stability metric is defined as a signed distance to
the border of the stability-guaranteed region. In Fig. 11, there
are five design cases evaluated at frequency ωk and each case
is represented by a circle. The HSM(ωk) for each case is the
signed length of the corresponding arrowed line. The sign is
positive if the circle is in the stability-guaranteed region, and
negative otherwise.

VI. Practical PDN Network Design

The proposed stability-checking approach provides a basis
for evaluating the stability of a given PDN by means of a
localized LDO HSM design constraint. This makes it possible
to efficiently leverage this constraint to drive the LDO design
optimization in an enhanced design flow. On the other hand,
from a design perspective, the introduction of HSM into the
design process of LDOs does introduce new design issues.
In many aspects, the techniques one may take to meet the
proposed HSM are with a flavor similar to ones that are
commonly employed by the designers to meet conventional
phase/gain margin targets. This similarity may help the adop-
tion of the proposed design approach by typical designers.
Nevertheless, our in-depth design analysis reveals unique
design considerations pertaining to tradeoffs between the new
HSM and other LDO performances, choice of key transistor-
level design parameters, and LDO design topologies. In this
section, we demonstrate a localized automated LDO design
flow and discuss key circuit-level design issues involved.

A. Design Flow

As elaborated in the previous section, all the information
required by the proposed stability-checking approach can be
obtained from AC simulations which circuit designers are well
familiar with. Thus, the approach can be easily integrated into
the conventional LDO design flow which the LDO designers
are already accustomed to. As such, the stability-ensuring
LDO design flow can be built upon the conventional flow with
the inclusion of one additional stability constraint.

The integration of the stability-checking approach is illus-
trated in Fig. 12. First of all, an initial LDO design with

Fig. 12. Stability-ensuring design flow.

sufficient circuit performances is obtained using the conven-
tional design methodology. The network stability evaluation
over the specified frequency samples is then performed at each
iteration until the stability is guaranteed and the performance
requirements are satisfied. Note that only the low-cost LDO
circuit evaluations (as in the gray box in Fig. 12) are repeated
in each design iteration, on the premises that the LDO sizing
during the optimization is well contained without affecting
the passive subnetwork structure, which may be achieved
by measures like prescribing a fixed chip area large enough
to accommodate sizing of the LDO within the optimization
boundaries.

B. LDO Design Insights and Performance Tradeoffs

From a design point of view, the key issues in ensuring
system stability are to properly control the gain, bandwidths,
etc. These are in some sense not more than what are manually
done in the standard LDO design process, including, but
not limited to, reducing the 3-dB bandwidth (pole splitting),
increasing the quiescent current, and adjusting the gain of the
local loop. Clearly, just like in the case of conventional phase
or gain margin, there are tradeoffs between stability and other
performances. However, there exist several new design issues
and opportunities for the case of hybrid stability, which we
discuss below.

One powerful aspect of the proposed stability-ensuring
framework is that it leverages the notions of passivity and
small gain in a complimentary way. This provides very useful
degrees of design freedom for guaranteeing stability and
trading off with other performances. We discuss two types of
design freedom: one that immediately exploits the frequency-
dependent nature of the hybrid stability framework and another
that creates freedom through circuit or topology modifications.
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1) Exploiting Frequency Dependence: As described ear-
lier, hybrid stability can be ensured by satisfying either the
passivity or gain condition at each frequency. The optimal
design of LDOs can be approached by choosing judiciously
one of the two conditions to satisfy for each frequency in
a way to minimize area and power overhead and influences
on other performances. It is instructive to examine how such
optimal designs may vary across different frequency ranges.

At DC and low frequencies, through investigations on the
2×2 Y -matrix of an LDO, we found that it is advanta-
geous for the LDO designed to satisfy the gain condition
(γG (jω)γH (jω) < 1). Specifically speaking, in this frequency
band, the elements in the first column of the Y -matrix are
smaller in magnitude than the corresponding elements in the
second column roughly by a factor of ALL, where ALL repre-
sents the loop gain of the local loop of each individual LDO,
a critical performance metric in the LDO design. For good
closed-loop regulation performances, a large ALL is normally
desired. On the other hand, by examining the property of the
Y -matrix, it can be observed that the LDO can simply become
not passive under large ALL. Therefore, it is extremely hard,
if not impossible, for an LDO to achieve good regulation
performances while exhibiting passive characteristics in this
frequency range. The conflict between passivity and regulation
performance is somewhat intuitively straightforward since this
is what active regulation is supposed to be as to differentiate
from passive regulation. In order to pass the HSM check
while keeping good regulation performance, satisfying the gain
condition should be targeted.

On the other hand, it is critical to note that satisfying the
gain condition does not necessarily imply lowering ALL. Im-
portantly, we have developed a constraint-relaxing technique
that allows us to lower the gain of the system-wide loop
without introducing much degradation of regulation perfor-
mance (corresponding to a high ALL). We discuss the design
implications resulted from the technique below while directing
the interested readers to Appendix A for more details.

First, take a look at a typical LDO structure illustrated in
Fig. 13(a) as well as some important AC currents labeled as ip,
is, and iEA. ip and iEA are, respectively, the dynamic currents
flowing in or out of the pass transistor and the error amplifier,
while is is the dynamic ground current in the output stage.
The technique then reveals that a generally effective way of
satisfying the gain condition is to make |is| larger than |iEA|.

At mid- and high-frequencies, it is well known that the
impedance peaking due to package parasitic inductance usu-
ally occurs, which is around the typical on-chip LDO’s unity-
gain bandwidth (GBW). Since the gain of Z-parameter matrix
of block H is in a sense of impedance, the package resonance
peakings are reflected in γH as similar peaks of value. While
we observed that LDOs usually exhibit local passivity in
a frequency band beyond its GBW, it is usually of less
performance cost to force the LDO to meet the passivity
condition than the gain condition at those peaking frequencies.
Tuning the LDO’s GBW below the peaking frequencies can be
one of the effective measures to meet the passivity condition
and it can be done by varying the value of LDO’s internal
capacitors (e.g., some compensation capacitors or some zero-
generation capacitors) and/or reducing the LDO’s bias current.

Fig. 13. Demonstrations of exemplary stability-enhancing schemes for the
LDO output stage design. (a) Scheme I: simple circuit modification on the
output stage. (b) Scheme II: topology change for the output stage.

In addition, it is also observed that the active devices in
LDO can no longer react to fast signal changes beyond a
certain high frequency ωh and only their intrinsic and parasitic
capacitors remain in play. For example, ip in Fig. 13(a) is
mostly conveyed through the path consisting of the gate-to-
source capacitor and the gate-to-drain capacitor of Mp; is is
through the grounded capacitors associated with the output
port, including the drain diffusion capacitance of Mp. Because
of the fact that the size of Mp is hundreds to thousands of
times larger than the transistors in EA, so are the capacitors
associated, thus, |is| can easily exceed |iEA|, and the gain
condition can be met in this frequency band with little design
effort.

Summarily, the passivity condition is chosen in the package
impedance peaking frequency range to relieve the efforts on
handling the rugged impedance peaks, while the gain condition
is selected at either DC and low frequencies or ultrahigh
frequencies.

2) Exploiting Circuit/Topology Modifications: Another im-
portant source of design freedom comes from LDO topology
modifications. In particular, if the output stage is designed in
such a way that |is| is greater than |iEA|, the gain condition
can be more easily met. Appendix A gives a more detailed
analysis on this claim.

According to this insight, a topological modification on the
output stage is identified, i.e., by adding a pull-down pass
transistor to the output stage [shown as the dashed NMOS M

′
p

in Fig. 13(a)] which is seldom seen in existing LDO topologies
and is, to our best knowledge, the first time acknowledged for
its effectiveness in enhancing stability. Alternatively, in the
same spirit, designers can choose another type of output stage
topology, e.g., a source follower, as shown in Fig. 13(b) to
fulfill the same purpose. Since the selection of LDO topology
should be made at the very beginning of the design process,
this insight may help designers to make the right choice earlier,
reducing possibility of design respinning.

C. Illustrative Design Optimization

To illustrate the application of the proposed techniques, we
develop an optimization-based automated design flow using an
optimizer to run the iterations shown in Fig. 12. The objective
function for this optimization contains two classes of terms:
one for penalizing performance degradations and the other for
penalizing instability. In general, any performance metric can
be considered in the optimization. For an illustration purpose,
the LDO’s performance metrics considered in this objective
function include, but not limited to, the load regulation accu-
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Fig. 14. LDO topology used in the practical implementations [8].

racy of the LDO (ACC) defined by 1 − |Vreg−Vpreset|
Vpreset

which is
an important DC characteristic that measures how close the
actual output voltage Vreg is to the target voltage Vpreset; the
gain-bandwidth product, GBW; the quiescent current Iq, which
emphasizes the quiescent current efficiency; the average output
admittance yavg, which can largely reflect how good the dy-
namic regulation is. yavg is defined by 1

ωn−ω0

∫ ωn

ω0
|y22(jω)|dω,

where ω0 and ωn are, respectively, the lowest and highest
frequencies of interest. These terms are properly normalized
and included in the objective function to be minimized

f = α(
ACCn

ACC
)k+β(

GBWn

GBW
)t +η(

Iq

Iq n

)p+γ lg(
yavg n

yavg
)+θ10−HSM (20)

where α, β, η, γ , and θ are the weights for respective
performance penalty terms, which reflect optimization biases
according to a specific practical set of design requirements;
the exponential or logarithmic functions are used to prevent
the optimizer from straying far away from the optimal point,
and to deal with large differences in the orders of magnitude
of those quantities. Specifically, the first four terms in (20)
indicate that the greater ACC, GBW, 1/Iq, and yavg are with
respect to the ones achieved by the initial design (i.e., ACCn,
GBWn, Iq n, and yavg n), the smaller f is, and the closer the
design will be to the optimum. Note that in the situation where
there are hard constraints on these performances, we can also
change the penalty functions into the ones dealing with the
differences between the actual values and the hard constraints.
Since negative HSMs do not guarantee stability, an exponential
function is chosen to heavily penalize any negative HSM so
that stability will be enforced.

For the LDO shown in Fig. 14 [8], due to their importance to
hybrid stability and other performance specifications, several
transistor-level design parameters are chosen: the widths of
Mp, Mc, and Mdb, and the amounts of pole/zero-tuning capac-
itors Cc1, Cc2, Cc3, and C1. The width of the pass transistor
(Mp) influences ACC, ω−3 dB, GBW, and yavg in a major
way, whereas the widths of Mc and Mdb are influential on the
bias current Iq and is in Fig. 13. The results of the proposed
optimization are presented in detail in the following section.

VII. Experimental Study

In this section, two experimental PDN designs are show-
cased to demonstrate the effectiveness and efficiency of the
proposed approach. While the PDN sizes are different in the
two cases, the adopted LDO topology is the same as shown in
Fig. 14. And the same package model [8] is adopted. Both
cases aim at an optimized PDN design with four on-chip

Fig. 15. Pole analysis showing the stability of the PDN desdigned with the
proposed approach.

Fig. 16. Transient analysis confirming the stability of the PDN with the
stability-ensured LDOs.

LDOs. An LDO is initially designed in the traditional manner
with sufficient circuit performances and a good phase margin
(referred to as the initial LDO design in the rest of this paper),
and then, respectively, the proposed approach is adopted to
optimize the initial LDO design. The circuits are designed
and optimized in a commercial 90 nm CMOS technology. The
APPS optimizer [7] is adopted to tune the LDO.

A. Multiple LDOs in a Small Network

As discussed in Section II, the brute-force method for
stability checking is only feasible for small networks. To
verify the effectiveness of the proposed stability-ensuring LDO
design approach, we purposely continue the use of the small
PDN (of about only 20 nodes) as in the example discussed in
Section II and apply our approach to optimize the LDO for the
PDN’s stability, such that the classical pole analysis method
can be adopted to judge the effectiveness of our approach.
Comparisons are also made with the example in Section II
which showed that an LDO designed in a traditional manner
with a good phase margin cannot guarantee the network
stability.

In the pole analysis, we target a pair of complex poles that
move most evidently as the number of LDOs changes. Fig. 15
shows the movement of the poles on the s-plane as the number
of LDOs integrated into the network is increased. In contrast to
the rightward pole movement occurred in the counterexample
shown in Fig. 5, in this PDN with stability-enforced LDOs, the
movement is leftward and there are no RHP poles, meaning
that the system is stable and the proposed approach is effective
in ensuring the stability of the whole network. It is further
confirmed by the transient simulation results shown in Fig. 16
which demonstrates the waveforms of the regulated voltage
Vreg under load current variations. Compared with the heavy
oscillation of Vreg in the counterexample shown in Fig. 6, Vreg

in this case settles after the load current disturbance, reflecting
the stability of the system.
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Fig. 17. Loop gain and λmin of the initial design.

Fig. 18. Loop gain and λmin of the stability-ensured design.

B. Multiple LDOs in a Large Network

We further present the application of our approach to the
optimization of LDOs for a PDN of over 200 000 nodes, in
an attempt to demonstrate the effectiveness and efficiency of
the approach in large PDN design scenarios.

1) Stability Checking Along the Frequency Axis: The
frequency-wise stability checking on the initial LDO design
and the one designed in the stability-ensuring method are,
respectively, illustrated in Figs. 17 and 18, with the loop gain
and passivity metric λmin, being plotted in dashed lines and in
dash-dotted lines, respectively. In both figures, the frequency
ranges in which the gain condition is met are labeled as A,
the ranges where the passivity condition is met are labeled
as C, and the ranges where both conditions are met are B,
while the potentially unstable range is D. As shown in Fig.
17, the initial design violates the hybrid stability criteria at the
frequency band from about 6 to 35 MHz where the loop gain
exceeds unity while λmin < 0. It is shown in Fig. 18 that, by
the proposed approach, the initial design can be successfully
optimized into the design that satisfies the HSM criteria over
all frequencies and thus guarantees the stability of the whole
network.

2) Effectiveness of the Approach: In this case, since the
pole searching method is impractical, the transient simulation
results are instead used to confirm the stability of the system.
We first plug in four copies of the initial LDO. As shown in
Fig. 19, an arbitrarily selected nodal voltage on the regulated
power grids (Vreg) as well as the one on the global VDD
grids (GVDD) renders continuing oscillations. In contrast, the
PDN with LDOs given by our approach shows only slight

Fig. 19. Transient simulation results showing the instability of the PDN with
the LDOs designed in a standard manner.

Fig. 20. Transient simulation results confirming the stability of the PDN
with the stability-ensured LDOs.

fluctuations when iL variations occur, after which the voltages
become settled, as shown in Fig. 20.

3) Efficiency of the Approach: As indicated by Fig. 12,
there are two additional sources of design time cost: the AC
simulations for the gain characterization of the passive network
and the iterations of stability checking.

The former are performed at frequencies ranging from 1
Hz up to 1 THz with 200 samples per decade. There are four
LDOs in this case and hence eight ports in the passive network,
and the simulation by using an in-house simulator takes about
11 hours. Note that AC simulations are also a common practice
in the power grid analysis without regulators. So we do not
actually add any additional cost by doing so.

The rest of the stability-assurance procedure (the iterations)
is taken over by the optimizer. The optimization takes about
116 minutes (including simulator invocation time) to reach the
optimal performance tradeoffs while ensuring stability.

In summary, the total design time in this case is about
13 hours with 11 hours being consumed in the one-time
simulation of the passive subnetwork.

C. Performance Tradeoffs

When designing an on-chip regulated PDN, stability is
the primary design target. Without stability, the whole chip
is easily subjected to power failure. Therefore, comparisons
between the stability-ensured LDO designs in the above two
cases with the unstable initial LDO design are, in this sense,
not meaningful. However, to gain the insights, we perform the
comparisons on several performance metrics in this section.
Also, in order to get a more complete picture of the tradeoffs,
we set up the two optimization cases with different sets of
performance weights (i.e., α, β, η, and γ) to represent different
performance biases: in the small PDN case, the quiescent
current consumption is particularly stressed, while in the large
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TABLE I

Performance Tradeoffs

Initial
LDO

Opt. LDO
in the large
PDN

Opt. LDO
in the small
PDN

HSM −18.9 0.01 5e − 3
Stability Unstable Stable Stable
Load Reg. Acc. 99.96% 99.90% 99.91%
GBW (MHz) 511 422 380
Iq (μA) 469 518 340
yavg (S) 5.21 7.18 4.26
yavg/Iq (S/μA) 0.011 0.0139 0.0125

PDN case, the dynamic regulation performance is emphasized
more than the other two performances.

Table I lists the comparisons among the three designs. The
network stability metric HSM, negative in the initial design,
is greatly optimized to be positive in both optimization cases
indicating that the PDN stability is ensured. While it is obvious
that the unstable LDO design cannot be used in the PDN,
we first show that, in the large PDN case, by consuming
10.4% more quiescent power, the network stability is ensured.
In addition, we also gain an improvement of 37.8% on the
dynamic regulation performance metric yavg, bringing forth
a 26.3% improvement on yavg/Iq, an efficiency quantity that
measures the regulation performance gained per unit quiescent
power consumed. By emphasizing low power consumption, in
the small PDN case, the stability is ensured at a cost of 25.6%
GBW reduction and a 18.2% degradation of yavg, associated
with a quiescent power saving by 27.5%. The resultant yavg/Iq

is however improved by 13.6%.

VIII. Conclusion

We have presented a hybrid theoretical framework for
addressing the stability challenges of large PDNs with inte-
grated LDOs. A practical design methodology was developed
to allow for the localized design of LDOs while ensuring
the system-wide stability, leading to trackable stability-driven
design optimization of large PDNs. By virtue of unique design
freedoms in the framework, useful design insights into the
stability-ensuring LDO design were discussed. Experimental
results demonstrated the effectiveness and efficiency of our
method and also showed that the enforced PDN stability does
not necessarily incur significant performance degradations.

Appendix A

Constraint-Relaxing Technique to Meet the Gain

Condition

In Sections VI-B1 and VI-B2, the inequality |is| > |iEA| is
pointed out as a helpful design guide for meeting the gain
condition prescribed by Corollary 1 without compromising
regulation performance significantly. The detailed develop-
ment of this insight is discussed as follows.

To begin with, reconsider the LDO’s 2×2 Y -matrix in
Fig. 2(b). To lower the gain of block G, the element values
of the Y -matrix are inevitably to be decreased, especially the
dominant elements. As mentioned in Section VI-B1, y12 and
y22 are the dominant ones at low frequencies. Given the fact
that a large y22 is the key to achieve good load regulation,

Fig. 21. Illustration of splitting self-admittances in the LDO’s Y -parameter
model.

the on-chip voltage regulation can be compromised if y22 is
significantly reduced.

In order to solve this dilemma and further relax the stability
versus performance tradeoff, we propose to repartition the
system by splitting the self-admittances (y11 and y22) into two
parts with one part remaining in the LDO block and the other
part pushed into the passive network, as illustrated in Fig. 21.

Note that the splitting is only performed to meet the
gain condition as part of the stability-checking process. In
order to have a uniform mathematical description of the two
subsystems before and after the repartitioning, we introduce a
frequency-dependent splitting coefficient ρ (= 1 − ρ̃) defined
in the same way as α(ω) discussed in Section IV-A

ρ(ω) =

{
1, ω ∈ �

0, otherwise

where � is the set of frequencies at which the LDO block
satisfies the passivity condition. This splitting is automatically
controlled by ρ(ω) as the stability checking is being performed
along the frequency axis. At frequency bands where the gain
condition is preferred to satisfy, the self-admittances of LDO
block are deemed as elements in block H (i.e., ρ = 0);
otherwise, they are assigned back to the LDO block (i.e.,
ρ = 1). Obviously, the splitting coefficient is the same as
the frequency selection function α(ω). Thus, the splitting is
perfectly synchronized with the switching of the two hybrid
stability conditions to meet. Specifically, when to meet the
passivity condition, the splitting is not performed and block
H is still locally very strictly passive and the local passivity of
block G is to be examined; when to meet the gain condition,
additional elements are hooked up to the passive subnetwork.
For the latter case, because block H is changed, recalculation
of its gain is needed, which can be easily done since H(jω)
is only a small 2n-port model.

The benefit from repartitioning is that when targeting at
the gain condition, block G loses self-admittance elements in
the matrix which results in lowered γG , while on the other
hand, the self-impedances of block H are lowered too (due
to additional impedance in parallel), resulting in lowered γH .
In this way, meeting the gain condition is in fact helped by
increasing |y22|. For example, at DC and low frequencies, after
moving self-admittances out of block G, γG (ω) is approxi-
mately |y12(ω)|, while γH (ω) is roughly as large as 1/|y22(ω)|.
Therefore, γG (ω)γH (ω) ≈ |y12(ω)/y22(ω)|, which shows that
an increase of |y22| actually reduces the gain of the system-
wide loop.
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Since increasing |y22| with respect to |y12| is helpful to meet
the gain condition, we further examine its design implications.
By definition of admittance matrix, y12 = i1

V2
|
V1=0 ; y22 = i2

V2
|
V1=0 .

From Fig. 13(a), it is shown that |i1| = |ip +iEA| and |i2| = |ip +
is|. Therefore, one way to increase |y22| with respect to |y12| is
to make |is| greater than |iEA|, which can be accomplished by
designers through one of many means as discussed in Section
VI-B2.

In essence, the fundamental reason for this splitting to
work is the conservativeness brought by meeting γGγH < 1
which is only a sufficient condition for stability. Different
partitions of the system can lead to different degrees of
such conservativeness and hence potential benefits can be
obtained by seeking a proper partition of the system. Since
the repartitioning does not add or remove any elements into or
from the system, the entire system is physically unchanged; the
only thing it changes is the way we analyze the whole system.
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