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ABSTRACT
With increasing design complexity and robustness requirement,

analog and mixed-signal (AMS) veriication manifests itself as a key
bottleneck. While formal methods and machine learning have been
proposed for AMS veriication, these two techniques sufer from
their own limitations, with the former being speciically limited by
scalability and the latter by the inherent uncertainty in learning-
based models. We present a new direction in AMS veriication by
proposing a hybrid formal/machine-learning veriication technique
(HFMV) to combine the best of the two worlds. HFMV adds formal-
ism on the top of a probabilistic learning model while providing a
sense of coverage for extremely rare failure detection. HFMV intel-
ligently and iteratively reduces uncertainty of the learning model
by a proposed formally-guided active learning strategy and dis-
covers potential rare failure regions in complex high-dimensional
parameter spaces. It leads to reliable failure prediction in the case
of a failing circuit, or a high-conidence pass decision in the case
of a good circuit. We demonstrate that HFMV is able to employ a
modest amount of data to identify hard-to-ind rare failures which
are completely missed by state-of-the-art sampling methods even
with high volume sampling data.

1 INTRODUCTION
With increasing design complexity and rising robustness require-

ment, analog and mixed-signal (AMS) veriication manifests itself
as a key bottleneck [1]. For instance, automotive electronics may
have an extremely low failure rate requirement, e.g. 1 DPPM (defec-
tive parts per million) or less, making failure detection and design
veriication very challenging. On one hand, formal veriication is
appealing as it provides a provable łyes/nož answer w.r.t the spec-
iications under check. However, performing formal veriication
directly on top of a detailed low-level (nonlinear) SPICE circuit
netlist or model (e.g. a DAE or hybrid automation) severely limits
scalability. To date, formal techniques are only feasible for small
analog blocks described by idealistic models, falling behind the prac-
tical industrial needs [3, 6]. On the other hand, one may employ
machine learning for AMS veriication [4] with the advantages be-
ing data-driven, incremental, and much more scalable, particularly
when a suicient amount of training data can be collected through
simulation or silicon measurement. However, learning-based mod-
els do not provide a formal answer, and come with inherent model
uncertainty and noise [4, 9]. Furthermore, the state-of-the-art smart
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statistical sampling techniques (e.g. [11]) are not speciically tar-
geted for providing a guarantee for rare failure detection and can
miss rare failures especially under a limited sampling data budget.

This work presents a new perspective in AMS veriication by
proposing a hybrid formal/machine-learning veriication (HFMV)
framework that simultaneously exploits formal and machine learn-
ing techniques. In its most abstract form, HFMV comprises two
key elements: a probabilistic machine learning model and formal
veriication that acts on top of the machine learning model. It is
the interactions between the two elements that form the promise
of HFMV. The probabilistic model is trained from limited simula-
tion/measurement data and comes with a measure of uncertainty
for each prediction of the circuit performance under veriication.
Given a bounded veriication space of design or uncertainty pa-
rameters, e.g. process variations or operating conditions, formal
veriication is applied with respect to a symbolic formula derived
from the posterior prediction of the probabilistic learning model to
check if the targeted speciication is met across the entire veriica-
tion space with a suiciently high conidence.

HFMV has the best of the two worlds: it adds a degree of for-
malism on top of learning-based models by utilizing satisiability
modulo theories (SMT) [7, 10] formal techniques; and it is much
more scalable than pure formal techniques at the same time. Fur-
thermore, to circumvent the inherent uncertainty of machine learn-
ing, the proposed framework łformallyž bounds learning model
uncertainty and practically veriies design properties over a high-
dimensional space of design uncertainty. HFMV presents several
key contributions to AMS veriication:
• Bridges the gap between design complexity and scalability of ver-
iication by integrating formal and machine-learning techniques
into a general hybrid veriication framework;

• Builds a degree of formalism into machine-learning based verii-
cation to safeguard detection of extremely rare failure under a
limited data budget;

• Explores novel formally-guided active learning to iteratively re-
duce learning model uncertainty towards rare failure detection;

• Signiicantly accelerates formal solutions by eicient one-time
preprocessing of SMT formulas to be checked.
Experimental studies have demonstrated that HFMV can reliably

verify AMS design speciications and identify extremely rare fail-
ures under complex high-dimensional parametric uncertainties for
which state-of-the-art smart statistical sampling techniques fail.

2 PROBABILISTIC MODEL-BASED FAILURE
PREDICTION

We propose a notion of probabilistic model-based failure pre-
diction before presenting HFMV. Given a bounded D-dimensional

parameter space Ω ⊆ IRD , the true performance y (x) at a partic-
ular point x ∈ Ω of the design under veriication (DUV) can be
determined either by simulation or measurement. Without loss
of generality, a point x ∈ Ω is considered as a (true) failure if
y (x) ≥ T , where T is the targeted speciication (assuming greater
the value, worse the performance). Verifying a highly robust design



for which failures are extremely rare, inding a failure point in a
high-dimensional space can be extremely challenging and expen-
sive in terms of numbers of measurements and simulation samples
needed. We propose to leverage an eicient probabilistic machine
learning model to replace direct measurements and simulations.

2.1 Probabilistic Machine Learning Model
HFMV exploits a large body of popular probabilistic machine

learningmodels where each inference is probabilistic such as Bayesian
additive regression trees [2], relevance vector machine (RVM) [12],
and sparse relevance kernel machine (SRKM) [5] . The last two fall
under the broad family of Gaussian processes.

Generally, each prediction from a probabilistic model with model
parameters θ is based on a posterior predictive distribution, whose
cumulative distribution function (CDF) FY (y;θ ) speciies the prob-
ability for true performance y (x) to fall in the range of [a,b]:

Prob {a ≤ y (x) ≤ b} = FY (b;θ ) − FY (a;θ ) . (1)

We deine the P-Prediction ŷ (x , P ;θ ) associated with a proba-
bility value P for a certain point x as:

Deinition 2.1. ŷ (x , P ;θ ) = F−1
Y

(1 − P ;θ ) .

According to the deinition above, it is straightforward to show
that the probability for true performance y (x) to be no less than
ŷ (x , P ;θ ) is P :

Prob {y (x) ≥ ŷ (x , P ;θ )} = P . (2)

Consider SRKM as an example, which is an extension to the
relevance vector machine (RVM) [12] and ofers improved accuracy
and the appealing probabilistic feature weighting capability [5]. A
trained SRKM model has a posterior Gaussian predictive prediction
with mean ŷest (x) and variance σ̂est (x) at a point x ∈ Ω as:

y ∼ N
(

ŷest (x) , σ̂
2
est (x)

)

(3)

ŷest (x) = v̄
T
K (x) (4)

σ̂est (x) =

√

σ 2
+K(x)T ΣvK(x), (5)

where σ 2 is the estimated intrinsic noise, v̄ and Σv are the posterior
D×1 expectation andD×D covariancematrix of the feature weights,
respectively, andK (x) is the D × 1 design vector based on a chosen
kernel function, which will be further discussed in Section 5. The
detailed expressions for the above prediction can be found from [5].
The P-Prediction for SRKM is given by:

ŷSRKM (x , P ;θ ) = ŷest (x) − Φ
−1 (P) · σ̂est (x) . (6)

where Φ−1 (·) is the inverse function of CDF of a standard normal
distribution.

2.2 Probabilistic Failure Detection
We leverage a probabilistic model for failure detection. However,

instead of using the optimal posterior performance estimator, which
is the mean ŷest (x) of the posterior predictive distribution, we
make use of the P-Prediction to cope with uncertainty of machine
learning and check if x is a failure at a given conidence level by:

ŷ (x , P ;θ ) ≥ T . (7)

If (7) holds true, it is easy to see the following based on the mono-
tonicity of the CDF:

Prob {y (x) ≥ T } ≥ Prob {y (x) ≥ ŷ (x , P ;θ )} = P . (8)

Therefore, if a point x satisies ŷ (x , P ;θ ) ≥ T , x is a (true) failure
with a probability at least P . If P is large enough, x can be identiied
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Figure 1: Probability to be a failure/good point by a proba-
bilistic machine learning model.

as a true failure (red cross) with a high conidence as shown in Fig.
1. Conversely, if the P-Prediction ŷ (x , P ;θ ) < T , then

Prob {y (x) < T } ≥ 1 − Prob {y (x) ≥ ŷ (x , P ;θ )} = 1 − P . (9)

Therefore, x is a good design point with a probability at least
1 − P . When P is small enough, x may be identiied as a good point
(blue dot) with high conidence as shown in Fig. 1. Based on the
satisiability of (7), x can be classiied as a failure/good point with
certain model belief determined by P as summarized in Table 1.

Table 1: Model beliefs based on statisiability of (7).

P ≈ 1.0 P ≈ 0.0

SAT Failure (strong belief) Failure (weak belief)
Non-SAT Good (weak belief) Good (strong belief)

3 FORMAL PROBLEM FORMULATION
We apply formal veriication on top of a trained probabilistic

machine learning model to provide a degree of coverage for failure
detection, which is accomplished by exhaustively proving or dis-
proving a given speciication T at an adaptively chosen conidence
level P in the entirety of the parameter space Ω. To do so, we make
use of the recent advances in satisiability modulo theories (SMT)
solvers.

SMT solvers are extensions to Boolean satisiability (SAT) coun-
terparts which check the satisiability of formulas deined on Boolean
variables and operations. SMT solvers come with added expressive-
ness of uninterpreted function symbols, equality, quantiiers, and
various operations such as arithmetic, datatype and array opera-
tions [8]. While originally developed in 1970s, SMT technology has
undergone signiicant improvements lately. A number of eicient
SMT solvers have emerged, for example Z3[7] and iSAT3 [10].

3.1 Two Hybrid Veriication Problems
In HFMV, two hybrid veriication problems are deined. To ex-

haustively check the existence of any failure point according to the
machine learning model belief in the entire parameter space, we
deine an SMT-based problem called Failure Detection Problem
using (7):

∃x ∈ Ω s.t. ŷ (x , P ;θ ) ≥ T , P ≈ 1.0. (10)

A SAT solution with P close to one returned by the SMT solver
is very likely to be a true failure. If this is veriied to be a true
failure by a single simulation/measurement, a łFailž conclusion is
immediately drawn for the veriication task, and additional failures
may be obtained by inding more SAT solutions if desired.



We deine theDesign Certiication Problemwhich is checked
when one attempts to verify that the targeted speciication is met
across the entire parameter space:

∃x ∈ Ω s.t. ŷ (x , P ;θ ) ≥ T , P ≈ 0. (11)

A Non-SAT solution from the SMT solver indicates that all points in
Ω are believed to be good by the model at a high conidence level. In
practice, we draw a łPassž conclusion of veriication only when both
P and the model uncertainty (measured by the prediction variance)
are suiciently low, the latter of which is achieved during the active-
learning guided iterative model re-training process described in
Section 4. By tuning the conidence level P and monitoring the
model uncertainty while operating on the two problems, we direct
the SMT solver towards solving either the Failure Detection Problem
or the Design Certiication Problem.

Note again the HFMV framework can be built upon any prob-
abilistic machine learning model as long as a posterior predictive
distribution FY (y;θ ) is provided. Using SRKM as the underlyingma-
chine learning model as an example, assume Ω is a D-dimensional

bounding box with x (i) ≤ x (i) ≤ x (i) along each parameter di-

mension i , the SMT form of the Failure Detection Problem or Design
Certiication Problem at a properly chosen P is:

∃x ∈ IRD

s.t.
{

ŷest (x) − Φ
−1 (P) · σ̂est (x) ≥ T

}

∧
{

x (i) ≤ x (i) ≤ x (i)
}

, i = [1,D] .

(12)

4 PROPOSED ACTIVE LEARNING
Based on the fact that failures are extremely rare and hard to

detect, a small initial training dataset may not contain any failure,
which results in an initial łlousyž probabilistic model as illustrated
in Fig. 2. To address this challenge, we propose to iteratively im-
prove the model accuracy through active learning with the goal of
approaching rare failure regions under a limited data budget. Active
learning selects optimal sampling locations on-the-ly and directs
re-training of the machine learning model across multiple iterations.
We explore two active learning approaches: 1) max variance learn-
ing to reduce model uncertainty based on max variance values of
model prediction, and 2) a novel formally-guided approach aiming
at discovery of rare failure regions.
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Figure 2: Proposed active learning.

4.1 Max Variance Learning
The posterior predictive distribution FY (y;θ ) reveals the essen-

tial information of model uncertainty. In particular, regions with
large prediction variance Var (y;θ ) correspond to locations where
model uncertainty is high. Additional sampling can be performed

at points with the largest variance to improve the overall model
accuracy:

argmax
x

Var (y;θ ) , s.t. x ∈ Ω. (13)

Since the above Max Variance Learning phase takes place early
on in the active learning process as shown in Fig. 2, the optimization
needs not to be done exactly. Instead, we eiciently evaluate the
model variance at a large number of randomly chosen points in
Ω, and pick the top Nvar locations for additional simulation or
measurement. Then, the model is retained using the larger training
dataset. Experimentally, performing one or two such iterations is
suicient.

4.2 Formally-Guided Active Learning
Finding extremely-rare failures can be very challenging for de-

signs with stringent failure-rate requirements. Improving just the
overall machine learning model accuracy as typically done in a
standard active learning strategy is far from addressing the rare-
failure detection challenge. Our key idea is to propose a novel
formally-guided active learning approach, where the main objec-
tive is to search for the most-probable failure locations in the entire
high-dimensional parameter space as shown in Fig. 3.
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Figure 3: Formally-guided active learning.

For the i-th iteration of the proposed formally-guided approach,
denote the parameters and the posterior predictive distribution of

the present model by θ (i) and FY

(

y;θ (i)
)

, respectively, which are

trained on the current datasetX (i). The corresponding P-Prediction

is denoted by ŷ
(

x , P ;θ (i)
)

. The Failure Detection Problem of (10) is

solved to ind the most-probable failure locations with P ≈ 1. It is
entirely possible that a Non-SAT solution is returned, indicating no
points can be identiied as a failure with a strongmodel belief. In this
case, P is reduced with a small step gradually to allow for inding
candidate failure points with reduced model conidence. Otherwise,

a returned SAT solution x
(i)

(k )
satisfying (10) will be included as

the kth sampling point in the i-th iteration of active learning. We
repeatedly solve the following SMT instance to get the (k + 1)-th
point while avoiding getting the same solutions returned before:

∃x
(i)

(k+1)
∈ Ω\ ∪ {B1,B2, . . . ,Bk }

s.t. ŷ
(

x
(i)

(k+1)
, P ;θ (i)

)

≥ T ,
(14)

where each Bj (j = [1,k]) is a D-dimensional bounding box, i.e.

Bj =
{

x ∈ Ω

�

�

�








x (p) − x
(i)

(j)
(p)








 ≤ d0,p = [1,D]
}

is a hyper-cube

enclosing x
(i)

(j)
at its center with a length of 2d0 along each di-

mension. Assume at each i-th active learning iteration, a user-

deined Ni number of formally guided samples are selected: X
(i)
FS
=



{

x
(i)

(1)
,x

(i)

(2)
, . . . ,x

(i)

(Ni )

}

. All points in X
(i)
FS

are queried using either

circuit simulation or measurement to obtain the corresponding true
performance values. Adding these training samples to the dataset

used in the i-th iteration gives a larger dataset:X (i+1)
= X

(i)∪X
(i)
FS

,
which is used to re-train the model and update the predictive dis-

tribution FY

(

y;θ (i+1)
)

.

łActivelyž inding out the most-probable failure locations in the
high-dimensional parameter space is instrumental for extremely-
rare failure detection under limited data budgets. The proposed
active learning process terminates when reaching the set data limit,
when a large percentage of formally determined points are veriied
to be true failures, or when a targeted number of true failures
have been found. In the event of no true failure detection during
the active learning process, we then attempt to solve the Design
Certiication Problem of (11) by which we certify the circuit to be
good if both P and model uncertainty are suiciently low.

5 ACCELERATION OF SMT SOLUTIONS
A key computational component of the proposed HFMV frame-

work to solve variants of (10). To signiicantly boost runtime ef-
iciency, a promising solution is to simplify the nonlinear SMT
formula through novel equivalent transformations or approxima-
tions that can be much more eiciently solved. We propose two
numerical preprocessing schemes: input space re-mapping and lin-
ear approximation under the context of SRKM based probabilistic
model. These two techniques only present negligible one-time pre-
processing overhead for each SMT instance but have been shown
to speed up SMT solving by a few orders of magnitude.

5.1 Input Space Re-Mapping

SRKM employs a vector kernel function K (x∗) ∈ IRD×1 of the
following form to compute the similarity between M training sam-
ples and the input vector x∗ at which a prediction shall be made
over D parameter dimensions:

K (x∗) (k) =

M
∑

j=1

ω (j) · Kk (x∗ (k) ,X (j) (k)) ,k = [1,D] , (15)

where ω (j) is the posterior mean estimation for the j-th sample
weight, X (j) (k) is the k-th feature of the j-th training sample from
the training dataset X , and Kk (·, ·) is a scalar kernel function mea-
suring the similarity of two input vectors over the k-th dimension,
which can be chosen arbitrarily by the user to be, for example, a
radial basis function (RBF) kernel or polynomial kernel.

Important to note that in a trained model, x∗ is the only sym-
bolic vector variable in (15) and other terms are known constants.
Furthermore, K (x∗) (k) is only symbolically dependent on the k-
th dimension (parameter) x∗ (k) of the input vector x∗, allowing

deining new symbolic variables a = [a(1),a(2), · · · ,a(D)]T :

a (k) = д(x∗ (k)) = K (x∗) (k) , (16)

where function д(·) is introduced to signify the fact that a (k) only
depends on x∗ (k). This allows to re-map the input vector from
the original X -space to the new A-space. The minimum a (k) and

maximum a (k) of a (k) for each dimension can be obtained through
a trivial one-dimensional optimization:

a (k) = min
x∗(k )≤x∗(k )≤x∗(k )

K (x∗) (k) , (17)

a (k) = max
x∗(k )≤x∗(k )≤x∗(k )

K (x∗) (k) , (18)

where x∗ (k) and x∗ (k) specify the bounds of the k-th component

of the input vector in the original parameter space Ω.
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Figure 4: Input space re-mapping.

Instead of operating in the the originalX -space, the SMT problem
can be reformulated in the A-space as illustrated in Fig. 4:

∃a ∈ IRD

s.t.
{

v̄
T
a − Φ

−1 (P) ·
√

σ 2
+ aT Σva ≥ T

}

∧
{

a (k) ≤ a (k) ≤ a (k)
}

,k = [1,D] .

(19)

The new SMT instance of (19) is equivalent to the original prob-
lem while having no strong nonlinearity introduced by the non-
linear kernel function, and hence can be more eiciently solved.
A solution obtained in the A-space is easily mapped back to the
X -space numerically.

5.2 Linear Approximation
Note that the formula of (19) is nonlinear due to the square root

computation for the model variance and the quadratic term a
T
Σva.

We propose to ind a close linear approximation of (19) such that a
state-of-the-art fast linear SMT solver such as Z3 [7] can be applied.

Since Σv is a positive semideinite matrix, the lower bound of

a
T
Σva term can be eiciently found by a one-time convex qua-

dratic minimization within the bounded hyper-cube:

la = min
a

a
T
Σva, with a (k) ≤ a (k) ≤ a (k),k = [1,D] . (20)

Inserting the this lower bound into (19) leads a safe linear ap-
proximation to (21):

∃a ∈ IRD

s.t.
{

v̄
T
a − Φ

−1 (P) ·
√

σ 2
+ la ≥ T

}

∧
{

a (k) ≤ a (k) ≤ a (k)
}

,k = [1,D] .

(21)

Our results show that this linear formula is reasonably accurate
and can be very eiciently solved. The identiied candidate failure
points are further checked by the exact formula to ilter out false
solutions. Z3 can solve 1,000 SMT instances of (21) in 2 CPUminutes
while solving one instance of (19) may take around 9 minutes.

6 EXPERIMENTAL RESULTS
We test the proposedHFMVon three analog circuits and compare

its performance with the Monte Carlo (MC) method and Scaled-
Sigma Sampling algorithm (SSS) [11] , a state-of-the-art smart sta-
tistical sampling technique that has demonstrated excellent perfor-
mance for analog yield estimation. To maximize the possibility of
hitting rare failures based on MC, uniform sampling is adopted in
each bounded parameter space. The prototyped HFMV tool was
developed using SRKM as the underlying probabilistic machine
learning model in C++.

The three test circuits are: a diferential ampliier (Amp), a low-
dropout voltage regulator (LDO) (Fig. 5) , and a DC-DC converter
(DCDC) (Fig. 6) , all designed using a commercial 90nm CMOS
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Figure 5: A LDO with 60 transistor-level variations.
technology design kit. Simulation data is collected using Synopsys
HSPICE (for Amp and LDO) and Cadence Spectre (for DCDC). A few
speciications for each of the following 10 performances are chosen
as veriication targets: GBW, gain and CMRR for the ampliier, OA
(output accuracy), OS (overshoot), RS (ripple size) and PE (power
eiciency) for the DC-DC converter, and QC (quiescent current),
US (undershoot) and LR (load regulation) for the LDO. Three types
of transistor-level variations are considered for each transistor in
the ampliier and LDO: channel length, threshold voltage, and gate
oxide thickness, resulting in a 15-dimensional and 60-dimensional
veriication problem, respectively. Channel length and width vari-
ations are considered for each transistor in the DC-DC converter,
resulting in a 44-dimensional veriication problem.

Two 15-D hyper-cubes covering ±4σ and ±8σ variation of each
device parameter around the mean, respectively, are set up as the
bounded parameter space for veriication of the ampliier. Similarly,
44-D and 60-D hyper-cubes are set up for ±4σ and ±8σ veriication
of the DC-DC converter and LDO, respectively. Based upon the
Gaussian distribution used to model all process variations (not
required by HFMV though), the probability masses outside each
hyper-cube are 0.1%, 0.3% and 0.4% respectively for the ampliier,
DC-DC converter and LDO in the ±4σ case, and 2 × 10−12%, 6 ×
10−12%, and 8 × 10−12% for the three designs in the ±8σ case.
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Figure 6: A DC-DC converter with 44 transistor variations.

6.1 Active-Learning Guided Failure Discovery
By interfacing with HSPICE or Spectre, HFMV starts with 200

initial simulation samples uniformly sampled in the bounded pa-
rameter space. After that, the proposed active learning strategy
performs two rounds of sampling to collect 400 data points with
max variance of model prediction, and then directs failure discovery
by collecting around Ni ≈ 350 samples for each formally-guided
learning iteration. During this process, we record the number of
samples taken for inding the irst true design failure. The process
moves on to ind additional failures until reaching a user-deined
target or sample size limit. In case of inding no failure, a specii-
cation is considered satisied across the entire bounded parameter
space if a non-SAT solution is returned for the SMT formula that
checks the nonexistence of any point at which the performance
meets the speciication with a probability lower than some user-
speciied probability approximating to 100%.

We illustrate the active-learning guided failure discovery process
for the challenging task of±8σ CMRR veriication of the ampliier in
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Figure 7: Selected 6 iterations of proposed active learning
projected onto a 2D space spanned by two device variables
for ±8σ failure detection of ampliier CMRR. Gray crosses:
samples from the previous iteration; blue crosses: samples
selected in current iteration; red circle: sampled true fail-
ures. (a) Initial dataset; (b) max variance learning; (c) irst it-
eration of formally-guided active learning; (d) irst true fail-
ure found; (e)(f) large numbers of failures found.

Fig. 7. The process starts of with samples having max SRKM model
variance to improve the overall model accuracy. The proposed active
learning then directs the sampling process towards rare failure
points in the 15-D bounded parameter space. The efectiveness of
the active learning can be observed by the discovery of a true failure
point early on in the process and then many other failure points
later on, which are very rare.

6.2 Rare Failure Detection
All three methods are applied to ±4σ veriication of 10 speci-

ications of the three designs as in Table 2. Only HFMV and SSS
are applied to ±8σ veriication as shown in Table 3 as it is almost
completely meaningless to even try MC within such wide-ranges of
parameter variations for inding any extremely rare failure. HFMV
mainly targets at extremely rare failure detection, where the sam-
ples are very expensive to collect. The listed runtimes for MC in
Table 2 attempt to demonstrate that even for relatively small cir-
cuits, the simulation cost is huge when requiring a large number
of samples. When facing a fairly large circuit, the simulation time
can easily dominate the overall HFMV runtime. For example, the
overall HFMV runtime for output accuracy of the DCDC converter
cost around 14 hours, and around 10 hours were consumed by
simulation for the pre-layout schematic. Hence, the number of sim-
ulation runs shall be minimized as much as possible. As seen from
Table 2 and Table 3, the numbers of simulation samples used by
HFMV are signiicantly lower than SSS and MC. HFMV can hit the
irst true failure point using 600 to about 1,500 samples, which are
about 10x and up to 1,000x lower than used by SSS and MC,
respectively. Yet, both MC and SSS cannot ind any true failure in
the bounded parameter space. While SSS is one of the state-of-the-
art statistical sampling technique and has been shown to produce
excellent results for yield estimation of analog circuits [11] , it lacks
mechanisms speciically targeting for inding extremely rare failure
locations in high-dimensional parameter spaces.

Fig. 8 and Fig. 9 report the worst-case performances normalized
with respect to the corresponding speciications found by each
method. It can be observed that since both MC and SSS fail to
ind any true failure for all targeted performances, they produce
misleading outcomes for veriication. In contrast, HFMV is able



Table 2: Comparison on ±4σ failure detection. # Samp: # of training (simulation) samples used by each method; # 1st Fail Hit:
# of samples used for inding the irst true failure by HFMV; # Failure: # of failures found in the bounded parameter space.

Spec. Target
HFMV SSS MC

# Samp # 1st Fail Hit # Failure # Samp # Failure # Samp # Failure Time

Amp
GBW 22MHz 1,307 600 227 6,000 0 600,000 0

228:10:48Gain 2.5dB 2,307 1,507 155 6,000 0 600,000 0
CMRR 10dB 1,400 1,000 437 6,000 0 600,000 0

DCDC

OA 5.50% 1,200 600 334 4,000 0 45,000 0

699:16:48
OS 0.94% 1,000 600 319 4,000 0 45,000 0
RS 0.598mV 1,000 600 162 4,000 0 45,000 0
PE 83.20% 900 600 198 4,000 0 45,000 0

LDO
QC 16mA 2,486 600 287 6,000 0 649,000 0

160:25:12US 60% 1,800 1,000 319 6,000 0 649,000 0
LR 55% 1,897 898 435 6,000 0 649,000 0

Table 3: Comparison on ±8σ failure detection. Variables deined as in Table 2.

Spec. Target
HFMV SSS

# Samp # 1st Fail Hit # Failure # Samp # Failure
Amp GBW 5MHz 1,000 600 396 9,000 0

DCDC

OA 10.0% 1,300 600 312 9,000 0
OS 1.00% 600 600 85 9,000 0
RS 0.6mV 600 600 87 9,000 0
PE 80.00% 1,000 600 275 9,000 0

LDO
QC 20mA 896 600 140 9,000 0
US 100% 1,897 897 381 9,000 0
LR 80% 1,618 599 382 9,000 0
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Figure 8: Worst-case performances relative to the speciica-
tions found by each method in the ±4σ region.
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Figure 9: Worst-case performances relative to the speciica-
tions found by HFMV and SSS in the ±8σ region.

to ind many speciication violations (true failures). The identiied
worst-case performance values can be signiicantly worse than the
corresponding speciications.

7 CONCLUSION
A novel hybrid approach, namely HFMV, has been presented

to address rare failure detection challenges associated with AMS
veriication. HFMV combines the key beneits of formal veriication
and machine-learning based approaches while circumventing their
key limitations in terms of scalability and model uncertainty. It has
been demonstrated that HFMV can provide reliable veriication of

AMS performance speciications in high-dimensional parameter
spaces for which both Monte Carlo and a state-of-the-art sampling
technique lead to misleading results.
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