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Brain activity depends on transient interactions between segregated neuronal populations. While synchroni-
zation between distributed neuronal clusters reflects the dynamics of cooperative patterns, the emergence of
abnormal cortical hypersynchronization is typically associated with spike-wave discharges, which are char-
acterized by a sudden appearance of synchronous around 3 Hz large amplitude spike-wave discharges of
the electroencephalogram. While most existing studies focus on the cellular and synaptic mechanisms, the
aim of this article is to study the role of structural connectivity in the origin of the large-scale synchronization
of the brain. Simulating oscillatory dynamics on a human brain network, we find the space–time structure of
the coupling defined by the anatomical connectivity and the time delays can be the primary component con-
tributing to the emergence of global synchronization. Our results suggest that abnormal white fiber connec-
tions may facilitate the generation of spike-wave discharges. Furthermore, while neural populations can
exhibit oscillations in a wide range of frequency bands, we show that large-scale synchronization of the
brain only occurs at low frequencies. This may provide a potential explanation for the low characteristic fre-
quencies of spike-wave discharges. Finally, we find the global synchronization has a clear anterior origin in-
volving discrete areas of the frontal lobe. These observations are in agreement with existing brain recordings
and in favor of the hypothesis that initiation of spike-wave discharges originates from specific brain areas.
Further graph theory analysis indicates that the original areas are highly ranked across measures of centrality.
These results underline the crucial role of structural connectivity in the generation of spike-wave discharges.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Normal brain function requires the dynamic interaction of functional-
ly specialized but widely distributed cortical regions. Long-range syn-
chronization of oscillatory signals has been suggested to mediate these
interactions within large-scale cortical networks by dynamically
establishing task-dependent networks of cortical regions (Varela et al.,
2001). Disturbances of such synchronized networks have been implicat-
ed in several brain disorders, such as schizophrenia, autism, epilepsy,
Alzheimer's disease, and Parkinson's disease (Uhlhaas and Singer,
2006). Especially, while synchronization between distributed neuronal
clusters reflects the dynamics of cooperative patterns, the emergence
of abnormal cortical hypersynchronization is typically associated with
the occurrence of ~3 Hz spike-wave discharges (SWD) recorded on the
electroencephalogram (EEG). The sudden appearance of SW patterns
from a normal background leads to the traditional concept of sudden
hypersynchronous and widespread activity during generalized seizures.

The mechanisms underlying spike-wave patterns are complex and
may involve cerebral cortex and thalamus, intrinsic properties of neurons,
and various types of synaptic receptors present in the circuit. There has
u.edu (P. Li).
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been notable effort devoted to understanding seizure dynamics and vari-
ous hypotheses have been proposed to explain the underlying mecha-
nisms (Lytton, 2008; Yan and Li, 2011). Some studies (Destexhe, 1998;
Destexhe et al., 1996, 1998; Giaretta et al., 1987; Pollen, 1964) demon-
strate that synaptic receptors are especially important in the generation
of epileptic seizures while others believe intrinsic properties of neurons
play an important role (de Curtis et al., 1998; Dichter and Ayala, 1987;
Halliwell, 1986; Schwindt et al., 1988; Timofeev and Steriade, 2004;
Timofeev et al., 2004; Wong and Prince, 1978). While those studies
shed light on the intrinsic and synapticmechanisms of seizure generation,
they do not take into consideration the structural connectivity, which
may play an important role in the emergence of global synchronization.

Traditionally, the abnormality of structural connectivity is often ex-
plored in a localized pathologic brain region,which is typically the focus
of partial seizures. For example, in (Dyhrfjeld-Johnsen et al., 2007;
Santhakumar et al., 2005), the abnormal structural changes (mossy
fiber sprouting, mossy cell death, etc) in dentate gyrus are studied to
explore the genesis of temporal lobe epilepsy. Recently, the role of
structural connectivity underlying generalized epilepsies has re-
ceived more and more attention. From computational perspectives, in
(Benjamin et al., 2012), a phenomenological model of seizure initiation
is used to demonstrate that network structure (identified from EEG) in
patients with idiopathic generalized epilepsies correlates with smaller

http://dx.doi.org/10.1016/j.neuroimage.2012.09.031
mailto:byan@tamu.edu
mailto:pli@tamu.edu
http://dx.doi.org/10.1016/j.neuroimage.2012.09.031
http://www.sciencedirect.com/science/journal/10538119


35B. Yan, P. Li / NeuroImage 65 (2013) 34–51
escape times relative to network structures from controls, suggesting
that network structure may play an important role in seizure initiation
and seizure frequency. Using the samemodel, the study in (Terry et al.,
2012) demonstrates that EEG discharge representing either generalized
or focal seizure arises purely as a consequence of subtle changes in net-
work structure, without the requirement for any localized pathological
brain region. In (Goodfellow et al., 2011), the authors show that in an ex-
tended local area of cortex, spatial heterogeneities in a model parameter
can lead to spontaneous reversible transitions from a desynchronized
background to synchronous SWD due to intermittency.

While successfully demonstrating the potential role of network
structure underlying generalized epilepsies, none of these studies
has been done based on the time-space structure of biologically real-
istic connectivity of human brain. In fact, as explicit time delays are
neglected, these studies are restricted to interacting local populations.
To explain the emergence of synchronization at large spatial scales
ranging up to almost 20 cm, we believe the network structure of
the brain should be taken into consideration. The anatomical connec-
tions between areas of the brain form a structure network upon
which various neural activities unfold. Brain areas are dynamically
coupled to one another forming functional networks associated
with perception, cognition, and action, as well as during spontaneous
activity in the default or resting state. Existing computational studies
demonstrate the important role of the characteristic “small-world”
structure of the underlying connectivity matrix between different
brain areas in the spontaneous emergence of spatio-temporally struc-
tured network activities (Cabral et al., 2011; Deco et al., 2009, 2011;
Ghosh et al., 2008; Honey et al., 2007, 2009). Especially, recent studies
(Cabral et al., 2011; Deco et al., 2009) have revealed that resting state
activity (the temporally coherent activity in the absence of an explicit
task) is closely related to the underlying anatomical connectivity. Dur-
ing rest, spontaneous blood oxygen level dependent (BOLD) signal is
characterized by slow fluctuations (b0.1 Hz) and anti-correlated
spatiotemporal patterns. By modeling each brain region as a neural
oscillator and simulating in a biologically realistic brain network,
the slow fluctuating and anti-correlated spatiotemporal patterns
have been linked to fluctuations in the neural activity and synchrony
in the gamma range. Especially, the most agreement of the simulated
results with the empirically measured results has been found for a set
of parameters (coupling, delay, noise, etc) where subsets of brain
areas tend to synchronize in clusters while the network is not globally
synchronized.

The aim of this article is to study the role of structural connectivity in
the mechanistic origin of the large-scale synchronization of the brain,
which may relate to the spread of SW epileptic seizure activity. While
synchronization phenomenon in large populations of interacting ele-
ments has been widely studied in many areas of natural science, math-
ematics, and social science (Arenas et al., 2008), there has been little
work done specifically considering the space–time structure of a biolog-
ically realistic cortical network. To reveal the role of brain structural
connectivity in the emergence of such global synchronization, we
perform a simulation study based on biologically realistic connectiv-
ity of brain areas. The structural connectivity was derived from a
macroscopic cortico-cortical connectivity network derived from a
diffusion-magnetic resonance imaging (MRI) data set using the
method in (Zalesky and Fornito, 2009). The connectivity between all
brain area pairs is quantified by a connectivity strength matrix and a
fiber length matrix. Different from exiting works (Cabral et al., 2011;
Deco et al., 2009, 2011; Ghosh et al., 2008; Honey et al., 2007, 2009),
in which the neural dynamics at each brain area is modeled by a single
neural oscillator (FitzHugh–Nagumo oscillator, Wilson–Cowan oscilla-
tor, etc), we use a system of coupled phase oscillators described by
Kuramoto (1984) models to represent neural dynamics at each local
brain area. Therefore, the proposed model is capable of representing
not only the synchronization on a global level but also the local synchro-
nization on different brain areas.
Specifically, to take into consideration the interplay of local and
global processes at different time scales, we use local coupling
strength, global coupling strength, time delay, and intrinsic frequency
as independent parameters. An extensive exploration of the parame-
ter space illustrates that the space–time structure of the coupling de-
fined by the anatomical connectivity and the time delays can be the
primary component contributing to the emergence of global synchro-
nization. Our results will show that the global synchronization is
highly dependent on the time delays and the intrinsic frequencies of
the oscillators. To highlight the crucial role of interrelationship be-
tween local processes and the global activity, we further characterize
the initialization of synchronization in both time and space. Our re-
sults will demonstrate that the initialization of global synchronization
has a clear anterior origin involving discrete areas of the frontal lobe.
While experimental observations of frontal epileptic focus do exist
(Amor et al., 2009; Holmes et al., 2004; Pavone and Niedermeyer,
2000), there is a lack of understanding of the underlying mechanism.
In this paper, by performing graph theory analysis of the structural
connectivity, we will point out that the initialized areas of global
synchronization (“hot spots”) correspond to the nodes with highest
degree of centrality (“structural hubs”). This once again underscores
the crucial role of structural connectivity in the generation of SW
epileptic seizures.

Methods

Structural connectivity

We use the structural connectivity between 80 cortical areas of the
human brain. The areas are divided according to a functional subdivision
of the cortex derived from the automated anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002). The structural data for brain connectivity
is provided by Andrew Zalesky and Alex Fornito. The structural connec-
tivity is obtained from a macroscopic cortico-cortical connectivity net-
work derived from a diffusion-magnetic resonance imaging (MRI) data
set using the algorithm proposed in (Zalesky and Fornito, 2009).

In (Zalesky and Fornito, 2009), a new DTI-derived measure of
cortico-cortical connectivity is established based on the notion of infor-
mation flow. The measure is intended to reflect the maximum rate at
which information can be transmitted between a pair of cortical
regions, which is quantified by the net capacity of all interconnecting
fiber bundles. The set of all voxels comprising DTI space is first
partitioned into two sets: white-matterW, and grey-matter G using ei-
ther manual tracing or any of a number of automated segmentation al-
gorithms. The setG is then subdivided intoN continuous cortical regions
according to existing functional subdivision of interest to the research-
er. Then, a 3-D lattice scaffolding for white-matter is constructed by
drawing a link between each pair of voxels in a 26-voxel neighborhood
for which their two respective principal eigenvectors form a sufficiently
small angle. Let gi be the set of voxels comprising cortical region i=1,…,
N. Let E ið Þ∈W denote the set of white-matter voxels comprising the in-
terface cortical region gi. A path between a pair of nodes u and v is said
to be an (i,j)-path if u∈E(i) and v∈E(j). Let fi,j denote the maximum
number of link-disjoint (i,j)−paths that can be established. Since
the capacity of a fiber bundle is measured as the maximum number
of link-disjoint paths that can be established between opposing
ends of a fiber bundle, the net capacity provided by all fiber bundles
interconnecting cortical region gi and gj, given by fi,j, is used as a
measure of connectivity strength.

The connectivity between all brain area pairs is quantified by two
80×80 matrices: a connectivity strength matrix C and a fiber length
matrix L. As described above, the connectivity strength is estimated
based on the density of the white fiber tracts, which is given by the
net capacity of fiber bundles fi,j. The length of fiber connecting two
brain areas is calculated as the average length across all the fibers
connecting them. Both matrices are obtained by averaging over 31
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control subjects. Since tractography does not give fiber directionality,
both matrices are symmetric.

The human brain is divided into two hemispheres (left and right).
There are 40 different anatomical areas in each hemisphere. As each
area appears in both hemispheres, the total number is 80. For the
same anatomical area in different hemispheres, there are different indi-
ces and labels. The list of 40 anatomical areas is given in Fig. 1(C). For
Fig. 1. Structural connectivity of the brain. (A) The connectivity strength matrix (the conne
matrix (mm). (C) The list of anatomical areas of interests. There are 40 different anatom
corresponds to an anatomical area, and the columns show the index and label of the area
(LH), the name of the area, and the corresponding anatomical region it belongs to.
each area, it shows the index and label in the right hemisphere (RH),
the index and label in the left hemisphere (LH), the name of the area,
and the corresponding anatomical region it belongs to. The connectivity
strength matrix C and fiber length matrix L are shown in Figs. 1(A) and
(B), respectively. The connectivity strength is normalized so that the
maximal strength is 1 (max(Cpq)=1, p, q=1, …, P), where P is the
total number of areas and P=80 for the current model. The intra-area
ctivity strength is normalized so that the maximal strength is 1). (B) The fiber length
ical areas of interests, and each appears in both hemispheres. In the table, each row
in the right hemisphere (RH), the index and label of the area in the left hemisphere
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connectivity strength and fiber length are set to 0 (Cpp=0, Lpp=0, p=
1,…, P). The order of brain areas in both matrices is arranged according
to the index of brain areas in Fig. 1(C).

Graph theory methods

Centrality is a structural attribute of nodes in a network, whichmea-
sures how central an actor is in network, and the contribution of net-
work position to the importance, influence, prominence of an actor in
a network. Central nodes in a network are those that have structural
or functional importance. To explore the centrality, we compute two
measures for all nodes: degree centrality and betweeness centrality,
which have been used to study the structural connectivity of the brain
(Ghosh et al., 2008; Honey et al., 2007). In this study, both measures
are computed based on the connectivity strength matrix C.

Degree centrality is defined as the number of links incident upon a
node (i.e., the number of ties that a node has). The degree centrality of
a brain area is computed based on the connectivity strength matrix C.
As the matrix C is symmetric, the degree of the pth brain area is com-
puted as the sum of the elements in the pth row degp=∑q=1

P Cpq,
p=1, …, P.

Betweenness centrality is the fraction of all shortest paths (a path be-
tween two nodes in a graph such that the sum of the weights of its con-
stituent edges is minimized) in the network that contain a given node.
Nodes with high values of betweenness centrality participate in a large
number of shortest paths. The betweenness centrality is calculated by
using the Matlab toolbox (http://www.brain-connectivity-toolbox.net),
which is specially developed for complex network measures of brain
connectivity (Rubinov and Sporns, 2010).

Neural dynamics model

We simulate the neural activity on a network of N nodes defined
using the previously described structural connectivity: the connec-
tion strength matrix C (normalized so that the maximal strength is
1) and the fiber length matrix L. For convenience, we first transform
the fiber length matrix L into a conductance delay matrix T by a
choice of a conduction velocity v=1 m/s such that T=L. As the max-
imal fiber length in L is 139 mm, the maximal conductance delay in T
is 139 ms.

Different from exiting works (Cabral et al., 2011; Deco et al., 2009,
2011; Ghosh et al., 2008; Honey et al., 2007, 2009), in which the neural
dynamics at each brain area is modeled by a single neural oscillator
(FitzHugh–Nagumo oscillator, Wilson–Cowan oscillator, etc), we use a
system of coupled phase oscillators described by Kuramoto (1984)
models to represent neural dynamics at each local brain area. Therefore,
the proposed model is capable of representing not only the synchroniza-
tion on a global level but also local synchronization on a specific brain
area. Synchronization phenomena in large populations of interacting el-
ements have been intensively studied in physical, biological, chemical,
and social systems. The Kuramoto model (Acebron, 2005; Kuramoto,
1984) is a successful approach to the problem of synchronization, in
which each member of the population is described as a phase oscillator
running at arbitrary intrinsic frequencies and those oscillators are
coupled through the sine of their phase differences. While simple
enough to be mathematically tractable, the model is sufficiently com-
plex to be nontrival, rich enough to display a large variety of synchroni-
zation patterns, and sufficiently flexible to be adapted tomany different
contexts.

The Kuramoto model has been used to study oscillatory brain activity
and several extensions have been proposed that increase its neurobiolog-
ical plausibility, for instance by incorporating topological properties of
local cortical connectivity (Breakspear et al., 2010). In particular, it de-
scribes how the activity of a groupof interactingneurons canbecome syn-
chronized and generate large-scale oscillations (Kitzbichler et al., 2009).
Simulations using the Kuramoto model with realistic long-range cortical
connectivity and time-delayed interactions reveal the emergence of
slow patterned fluctuations that reproduce resting-state BOLD functional
maps, which can be measured using fMRI (Cabral et al., 2011).

The dynamics of the Kuramoto model consisting of a population of
N coupled phase oscillators is governed by (Acebron, 2005)

_θn tð Þ ¼ ωn þ
XN

j¼1

knjsin θj t−τnj
� �

−θn tð Þ
� �

;n ¼ 1;…;N; ð1Þ

where θn(t) is the phase of the nth oscillator at time t, fn=ωn/2π is the
intrinsic frequency of the nth oscillator, knj and τnj are the coupling
strength and conductance delay from jth oscillator to nth oscillator.

In this study, we assume all the oscillators have the same intrinsic
frequency

f n ¼ f ;n ¼ 1;…;N; ð2Þ

and use f as a global parameter to study the occurrence of synchroni-
zation at different frequencies. If the nth oscillator and the jth oscilla-
tor are from the pth and the qth brain areas, respectively, then

knj ¼ SglobalCpq τnj ¼ SdelayTpq; ð3Þ

where Cpq and Tpq are the elements of the pth row and qth column of
the matrices C and T, and Sglobal and Sdelay are the scaling factors.
Therefore, the connectivity and the delay matrices are fixed in their
structure and only their scaling can be varied with Sglobal and Sdelay, re-
spectively. If the two oscillators are from the same brain area, then

knj ¼ Slocal τnj ¼ 0; ð4Þ

where Slocal is the scaling factor for local coupling strength. So each
oscillator connects to all other local oscillators within each brain
area. As the current study is focused on the role of global connectivity,
we assume the local coupling strength is the same for all brain areas
and the local time delay is 0.

At the global level, the network synchrony can be evaluated by a
complex-valued global order parameter defined by

R tð Þeiϕ tð Þ ¼ 1
N

XN

n¼1

eiθn tð Þ
; ð5Þ

where the amplitude R(t) measures phase uniformity and varies
between 0 for a fully desynchronized or incoherent state to 1 for a fully
synchronized state. For sufficient synchrony, the phase ϕ(t) describes
the movement of the oscillator ensemble around the unit circle.

At the local level, the network synchrony for each brain area can
be evaluated similarly. For example, if there are P brain areas and
M oscillators in each area, the local order parameter for the pth area is
defined as follows

Rp tð Þeiϕp tð Þ ¼ 1
M

XM

m¼1

eiθm pð Þ tð Þ
;p ¼ 1;…; P; ð6Þ

where θm(p)(t) represents the phase of the pth oscillator in themth brain
area. As all the brain areas have the same number of oscillators in the
currentmodel, the global parameter is the average of the local order pa-
rameters

R tð Þeiϕ tð Þ ¼ 1
P

XP

p¼1

Rp tð Þeiϕp tð Þ
: ð7Þ

The present model depends on four independent parameters:
scaling factor of global coupling strength Sglobal, scaling factor of
local coupling strength Slocal, scaling factor of global delay Sdelay, and
intrinsic frequency f. In this work, we conduct a set of partial
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parametric studies in the 4 dimensional space (Sglobal,Slocal,Sdelay,f). We
first explore the 3 dimensional subspace (Sglobal,Slocal,Sdelay) by choos-
ing an intrinsic frequency f=4 Hz. In the first step, we study the role
of structural connectivity in the global synchronization in the delta
range, which may correspond to the hypersynchronized oscillations
in SW epileptic seizures. In the second step, we explore the 3 dimen-
sional subspace (Sglobal,Slocal,f) by choosing a scaling factor Sdelay=0.1
for time delays. This scaling factor corresponds to a conductance
speed of 10 m/s, which is in the physiologically realistic range of
propagation velocity (around 5–20 m/s) for the adult primate brain
(Ghosh et al., 2008). In this step, we study the influence of intrinsic
frequencies on the global synchronization.

In this study, there are 80 brain areas (P=80) and there are 4 oscil-
lators in each area (M=4). Therefore, the total number of oscillators is
328 (N=328). The system of N dynamical equations was numerically
solved with a time-step 0.1 ms using forward Euler scheme. In each
simulation, phases of oscillators in each brain area are initialized to be
uniformly distributed on the interval [-π,π]. As a result, the amplitudes
of the global and local order parameters equal zero R(0)=0, Rp (0)=
0, P=1,…P, and the whole network is initialized in a state of fully
desynchronized or incoherence.

The simulator is implemented in C++ on a 24-core PowerEdge
R715 machine with 2 AMD Operton 2.2 GHz 12-core processors and
32 GB RAM. The simulation results are processed and visualized in
Matlab. Especially, the BrainNET Viewer (http://www.nitrc.org/projets/
bnv/) is used to visualize the brain network.

Results

Identification of the central nodes

Central nodes in a network are those that have structural or func-
tional importance. To explore the centrality, we compute degree cen-
trality and betweenness centrality for all the brain areas (Methods).
A brain view of connectivity, degree centrality, and betweenness cen-
trality is shown in Fig. 2(A). The figure includes sagittal, axial, and cor-
onal views of both hemispheres of the brain. The color of nodes
represents degree centrality (which decreases from deep red to deep
blue) and the size of nodes represents betweenness centrality. The
size of edges connecting two nodes represents the strength of connec-
tivity. Degree centrality and betweenness centrality of brain areas are
also compared in the bar graphs in Figs. 2(B) and (C), respectively.

The top twenty brain areas for degree centrality and betweenness
centrality are listed in Figs. 2(E) and (F), respectively. For degree cen-
trality, the top five areas are right dorsolateral part of superior frontal
gyrus (F1_R), left dorsolateral part of superior frontal gyrus (F1_L),
left middle occipital gyrus (O2_L), right supplementary motor ares
(SMA_R), and right middle frontal gyrus (F2_R). For betweenness
centrality, the top five areas are left dorsolateral part of superior fron-
tal gyrus (F1_L), right dorsolateral part of superior frontal gyrus
(F1_R), left middle frontal gyrus (F2_L), right middle frontal gyrus
(F2_R), and right middle temporal gyrus (T2_R).

Among those brain areas, right dorsolateral part of superior frontal
gyrus (F1_R), left dorsolateral part of superior frontal gyrus (F1_L),
and right middle frontal gyrus (F2_R) are highly ranked across both
measures, and can be identified as structural hubs in terms of centrality.
Conceptually similar to an airline hub, these are brain areaswith a com-
paratively high number of connections to the rest of the network. As we
will demonstrate below, the structural hubs have consequences on the
initialization of global synchronization.

Roles of coupling strengths and conduction delays in the emergence of
global synchronization

As briefly mentioned in Methods, the present model depends on
four free parameters: scaling factor of global coupling strength
Sglobal, scaling factor of local coupling strength Slocal, scaling factor
of global delay Sdelay, and intrinsic frequency f. In this work, we con-
duct a set of partial parametric studies in the 4 dimensional space
(Sglobal,Slocal,Sdelay,f).

In this part, we explore the 3 dimensional subspace (Sglobal,Slocal,Sdelay)
by choosing an intrinsic frequency f=4 Hz to study the role of structural
connectivity in the global synchronization in the delta range. Such syn-
chronization may correspond to the hypersynchronized oscillations in
SW epileptic seizures. The ranges of the three parameters are as follows:
Sglobal∈[0,1], Slocal∈[0,1], and Sdelay∈[0,1]. As a result, in the range of
parameters, all coupling strengths are smaller than 1. The range of cou-
pling strengths is selected based on the following two reasons: first,
the coupling strength is sufficiently small to make sure the phase reduc-
tion remains valid (Breakspear et al., 2010); second, the range is suffi-
ciently large to unveil the roles of parameters of interests qualitatively.
The maximal scaling factor of the delay Sdelay=1 corresponds to the
smallest conductance velocity v=1 m/s, and thus the range of delays
covers the physiologically realistic range of propagation velocities for
the adult primate brain (around 5–20 m/s) (Ghosh et al., 2008). For
each set of parameter combination (Sglobal,Slocal,Sdelay), the whole net-
work is initialized in a fully desynchronized state, and simulated for
10 seconds so that steady state can be approached in most cases. Note
that, similar qualitative results can be found by repeating the simulation
for different instantiations of the initial conditions. The amplitude of
global order parameter at the finalmoment R(10) is used as themeasure
of global synchronization.

As shown in Fig. 3, the 3 dimensional parameter space is demon-
strated as a set of 2 dimensional plane corresponding to different time
delays. In Figs. 3(A)–(F), the scaling factors of time delays are Sdelay=
0(A), Sdelay=0.1(B),Sdelay=0.2(C),Sdelay=0.3(D), Sdelay=0.4(E), and
Sdelay=0.5(F). The corresponding conductance velocities are v=0 m/s
(A), v=10 m/s (B), v=5 m/s (C),v=3.33 m/s (D), v=2.5 m/s (E),
and v=2 m/s (F). In Figs. 3(A)–(F), X-axis represents the scaling factor
of local coupling strength Slocal, Y-axis represents the scaling factor of
global coupling strength Sglobal, and the color represents the degree of
global synchronization. In Figs. 3(A)–(F), we see not only coupling
strengths can play an important role in the emergence of global syn-
chronization but also time delays can substantially change the dynami-
cal properties of brain networks.

First, as shown in Figs. 3(A)–(F), the global synchronization is highly
dependent on the timedelays. In particular, the degree of global synchro-
nization is decreased as the time delay increases. Thismeans time delays
tend to break coherence in populations of interacting units. Intuitively,
this can be explained as follows: when all the oscillators oscillate in a
synchronous fashion at the same frequency, the couplings reinforce syn-
chronous in-phase oscillation without conductance delay; however, if
conductance delay becomes nonzero, the stable synchronous oscillation
may become unstable because the transmitted signal from one oscillator
may arrive during the anti-phase of the other oscillator. Note that, the
physiologically realistic range of propagation velocities is around 5−
20 m/s for the adult primate brain (Ghosh et al., 2008). Therefore, the re-
sults in Figs. 3(B) and (C) fall into this physiological range as Sdelay=0.1
and Sdelay=0.2 correspond to v=10 m/s and v=5 m/s, respectively.
Our results show that the state of global synchronization does exist in
the physiological range and tends to vanish for longer delays Sdelay>0.3.

Second, the relationship between global synchronization and cou-
pling strength becomes more complex in the presence of time delays.
In Fig. 3(A), when there is no delay, the relationship between two
coupling strength in terms of global synchronization is straightfor-
ward: the global synchronization increases as either global or local
coupling strength increases while the other is constant. Intuitively,
one might think that an increase of coupling strength will always
lead to a higher degree of global synchronization, but this might not
be the case when time delays exist. For example, as shown in
Figs. 3(B)–(F), the highest degree of global synchronization does not
occur when both global and local coupling strength are maximal. In

http://www.nitrc.org/projets/bnv/
http://www.nitrc.org/projets/bnv/


Fig. 2. Degree centrality and betweenness centrality. (A) A brain view of connectivity, degree centrality, and betweenness centrality. The figure includes sagittal, axial, and coronal
views of both hemispheres of the brain: (a) axial top to bottom, (b) axial bottom to top, (c) coronal front to back, (d) coronal back to front, (e) sagittal left to right (left hemisphere),
(f) sagittal right to left (left hemisphere), (g) sagittal right to left (right hemisphere), (h) sagittal left to right (right hemisphere). The color of nodes represents the degree centrality
(which decreases from deep red to deep blue) and the size of nodes represents the betweenness centrality. The size of edges connecting two nodes represents the strength of
connectivity. (B) The Y-axis represents degree centrality and the X-axis represents the index of brain area. (C) The Y-axis represents betweenness centrality and the X-axis represents
the index of brain areas. (D) Top twenty ranked brain areas for degree centrality. (E) Top twenty ranked brain areas for betweenness centrality.
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Fig. 3(C), the highest degree of global synchronization occurs in two
disjoint sets. In contrast, in Figs. 3(B), (D), (E), and (F), the highest
degree of global synchronization occurs only in one set, in which the
global coupling strength is not maximal.
Overall, these results show that space–time structure of the cou-
pling defined by the anatomical connectivity (space) and the time
delays (time) can be the primary component contributing to the
emergence of global synchronization. Those results may have direct
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Fig. 3. Global synchronization in the parameter space of global and local coupling strength at different time delays. The X-axis represents the scaling factor of local coupling strength Slocal,
the Y-axis represents the scaling factor of global coupling strength Sglobal, and the color represents the amplitude of global order parameter. (A) Time delay τ=0(v=0 m/s). (B) Timedelay
τ=0.1τ0(v=10 m/s). (C) Time delay τ=0.2τ0(v=5 m/s). (D) Time delay τ=0.3τ0(v=3.33 m/s). (E) Time delay τ=0.4τ0(v=2.5 m/s). (F) Time delay τ=0.5τ0(v=2 m/s).
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implications for studies of SW epileptic seizures. The SW epileptic sei-
zures, different from localized seizure, are characterized by a sudden
emergence of brain level synchronization. While the roles of cellular
and synaptic mechanisms have been widely studied, the sudden
emergence of synchronization in such a large scale brain network is
still difficult to explain. In this regard, we hypothesize that the brain
structural connection is possible to play an important role. For exam-
ple, the role of time delays in global synchronization indicates that
the abnormality of white matter might facilitate the emergence of
SW epileptic seizures. The abnormality of the length, diameter, and
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myelination of axons may contribute to the abnormality of the time
delays. To verify the hypothesis, computational studies need to be
carried out with imaging techniques to quantify white matter integri-
ty of the patients suffering from SW epilepsy.

Roles of intrinsic frequencies in the emergence of global synchronization

Mathematically, how important time delays are for a population of
coupled phase oscillators is dependent on the ratio of the time delay
to the natural period of a typical oscillator. In the scenario of a brain
network, an interesting question would be how intrinsic frequencies
influence the degree of global synchronization. In other words, can
global synchronization emerge at all intrinsic frequencies? To study
the role of intrinsic frequency, we explore the 3 dimensional subspace
(Sglobal,Slocal,f) by choosing a scaling factor Sdelay=0.1. This corre-
sponds to a conductance speed of 10 m/s, which is in the physiologi-
cally realistic range of propagation velocity (around 5-20 m/s) for the
adult primate brain (Ghosh et al., 2008). Similar to the previous case,
for each parameter combination (Sglobal,Slocal,f), the whole network is
initialized in a fully desynchronized state, and simulated for 10 s. The
amplitudes of global order parameters at t=10 s are used as the mea-
sure of global synchronization.

As shown in Fig. 4, the 3 dimensional parameter space is demon-
strated as a set of 2 dimensional plane corresponding to different in-
trinsic frequencies. The intrinsic frequencies in Figs. 4(A)–(F) are
2 Hz, 4 Hz, 6 Hz, 8 Hz, 10 Hz, and 12 Hz, respectively. While longer
conductance delay tends to break coherence in populations of
interacting units, higher intrinsic frequencies have the same effects.
The results in Fig. 4 demonstrate a decrease of global synchronization
as the intrinsic frequency increases. In particular, global synchroniza-
tion tends to emerge at frequencies less than 6 Hz. In Figs. 4(A) and
(B), large areas in parameter space are found where a high degree
of synchronization can be achieved. Starting from Fig. 4(C), the
areas corresponding to high values of global synchronization signifi-
cantly decreases. Especially, the global synchronization vanishes be-
yond 12 Hz in the parameter space. The observation that global
synchronization tends to emerge at low frequencies may partially ex-
plain the low characteristic frequencies of SWD. More interestingly,
this agrees well with existing experimental observations. While neu-
ral populations can exhibit oscillations in a wide range of frequency
bands, global synchronization in the brain scale only occurs at low
frequencies. Although long range synchronization at high frequencies
(beta and gamma rhythms) does exist in separate parts of the brain
(Varela et al., 2001), the scale of such synchronization is quite limited
compared with the generalized synchronization in SW epileptic seizures.

Cortical local and global synchronization interplay in the
emergence of global synchronization

In the previous sections, we have demonstrated the roles of cou-
pling strength, time delay, and intrinsic frequency in the global syn-
chronization of the brain network. Another important question is
about the roles played by different brain areas in the initialization of
the global synchronization. It is interesting to know whether the
global synchronization is initialized from some particular brain
areas. To answer this question, we choose a combination of parameter
Sglobal=1, Slocal=1, Sdelay=0.1(v=10 m/s), and f=4 Hz to examine
the time courses of global and local synchronization. Note that, simi-
lar qualitative results can be obtained with other combinations of
parameters underlying global synchronization. In this study, we use
local order parameters to characterize the local synchronization of
each brain area and a global order parameter to characterize the global
synchronization.

As shown in Fig. 5(A), the blue lines represent the amplitudes of
local order parameters of brain areas, and the red line represents the
amplitude of the global order parameter. The global synchronization
starts from an increase of local synchronization of some brain areas,
and increases significantly in hundreds of milliseconds. The time
courses of the amplitudes of global and local order parameters agree
with the experimental observations in (Amor et al., 2009), where the
meanglobal and local synchronization time course across all 21 seizures
is depicted. In terms of local synchronization, there is considerable
variation among brain areas: some brain areas tend to get synchronized
earlier than others.

To better demonstrate the time courses, we show snapshots of
global and local order parameters at different times (t=0 s, t=4 s,
t=5 s, t=6 s, t=7 s) in the polar coordinate system, where
complex-valued order parameter is represented by a vector whose
length is R(t) and angle is ϕ(t). In Fig. 5(B), at t=0 s, all the order pa-
rameters are represented by the origin. This is because the phases of
oscillators in each brain area are initialized to be uniformly distribut-
ed, and thus the amplitudes of all the order parameters equal zero at
the beginning of the simulation. From t=4 s to t=7 s, we take snap-
shots every single second to demonstrate the emergence of synchro-
nization at both local and global levels. In Fig. 5(C), at t=4 s, the
maximal amplitude of local order parameters is only 10−5, and all
the brain areas are still fully desynchronized. In Fig. 5(D), at t=5 s,
the maximal amplitude of local order parameters is increased to be
0.002, and some brain areas start to show a tendency toward local
synchronization. Significant changes characterized by local synchro-
nization of some brain areas start to occur at t=6 s. As shown in
Fig. 5(E), at the local level, a few brain areas are in a state of partial
synchronization, and the maximal amplitude of local order parame-
ters is about 0.5. In contrast, at the global level, the network is still
desynchronized as the amplitude of global order parameter is only
0.05. By the time t=7 s, as shown in Fig. 5(E), not only many brain
areas have become locally synchronized but also the global synchrony
level has increased substantially. The amplitude of the global order
parameter is 0.66 and the network is partially synchronized at the
global level. Overall, the above results show that the emergence of
global synchronization starts from the emergence of local synchroni-
zation of a few brain areas.

Given the observation above, it is interesting to find out what
brain areas are involved at the initialization stage of global synchroni-
zation and why. To answer this question, we further characterize the
initialization of synchronization in both time and space. First of all, we
study the spatial distribution of local synchronization events at t=6 s
when global synchronization starts to emerge. As shown in Fig. 6(A),
a brain view of the degree of local synchronization is given. The figure
includes sagittal, axial, and coronal views of both hemispheres of the
brain, where the color of nodes represents the amplitude of local
order parameter (which decreases from deep red to deep blue), and
the size of nodes represents the degree centrality. We see there is a
strong correlation between the degree of local synchronization and
the degree centrality: the nodes with deep red colors turn out to be
the nodes of large sizes. To better demonstrate this, the amplitudes
of local order parameters of brain areas are compared in Fig. 6(B),
and the top twenty ranked brain areas are listed in Fig. 6(C).

In the initialization stage of global synchronization (t=6 s), the top
five ranked areas are right dorsolateral part of superior frontal gyrus
(F1_R), left dorsolateral part of superior frontal gyrus (F1_L), right sup-
plementary motor areas (SMA_R), right middle frontal gyrus (F2_R),
and left supplementary motor areas (SMA_L). Compared with the lists
in Fig. 2(C), we see that the structural hubs identified (F1_R, F1_L,
F2_R) are ranked in the first, second, and fourth places, respectively,
in Fig. 6(C). This means global synchronization is initialized from
a few “hot spots” corresponding to brain areas with highest degree of
centrality. According to the anatomical regions defined in (Tzourio-
Mazoyer et al., 2002), among the top twenty areas, 17 areas belong
to frontal lobe: F1_R(1st), R1_L(2nd), SMA_R(3rd), F2_R(4th),
SMA_L(5th), F1M_L(6th), F_L(7th), F1M_R(9th), F3T_R(10th), and
F3OP_R(11th); 4 areas belong to central regions: PRE_R(8th),



Fig. 4. Global synchronization in the parameter space of global and local coupling strength at different intrinsic frequencies. The X-axis represents the scaling factor of local coupling
strength Slocal, the Y-axis represents the scaling factor of global coupling strength Sglobal, and the color represents the amplitude of global order parameter. (A) Intrinsic frequency f=
2 Hz. (B) Intrinsic frequency f=4 Hz. (C) Intrinsic frequency f=6 Hz. (D) Intrinsic frequency f=8 Hz. (E) Intrinsic frequency f=10 Hz. (F) Intrinsic frequency f=12 Hz.
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PRE_L(12th), POST_R(15th), and POST_L(18th); 4 areas belong to limbic
lobe: MCIN_L(13th), MCIN_R(14th), ACIN_R(16th), and ACIN_L(17th);
only 1 area belongs to parietal lobe: P2_L(19th); only 1 area belongs to
occipital lobe: O2_L(20th). Therefore, brain areas from frontal lobe are
playing a dominant role in the initialization stage of the global syn-
chronization. In addition to those frontal areas, precentral gyrus (PRE),
postcentral gyrus (POST), median cingulate and paracingulate gyrus
(MCIN), and anterior cingulate and paracingulate gyrus (ACIN) are also
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Fig. 5. The time courses of global and local synchronization. (A) The X-axis represents the time, and the Y-axis represents the amplitudes of order parameters. The blue lines
represent the amplitudes of local order parameters of brain areas, and the red line represents the amplitude of the global order parameter. (B) The global (red) and local (blue)
order parameters of brain areas in the polar coordinate system at t=0 s. (C) The global (red) and local (blue) order parameters of brain areas in the polar coordinate system at
t=4 s. (D) The global (red) and local (blue) order parameters of brain areas in the polar coordinate system at t=5 s. (E) The global (red) and local (blue) order parameters of
brain areas in the polar coordinate system at t=6 s.
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Fig. 6. Spatial distribution of local synchronization events at t=6 s. (A) A brain view of the amplitudes of local order parameters of brain areas. The figure includes sagittal, axial, and
coronal views of both hemispheres of the brain: (a) axial top to bottom, (b) axial bottom to top, (c) coronal front to back, (d) coronal back to front, (e) sagittal left to right (left
hemisphere), (f) sagittal right to left (left hemisphere), (g) sagittal right to left (right hemisphere), (h) sagittal left to right (right hemisphere). The color of nodes represents the amplitude
of local order parameters (which decreases from deep red to deep blue), the size of nodes represents the degree centrality, and the size of edges connecting two nodes represents the
strength of connectivity. (B) The Y-axis represents the amplitude of local order parameter and the X-axis represents the index of brain area. (C) Top twenty ranked brain areas for the
amplitudes of local order parameters.
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involved in the initialization stage. Similarly, the spatial distribution of
local synchronization events at t=7 s is shown in Fig. 7. Different from
the previous case, at t=7 s, the amplitude of global order parameter
has increased to 0.66, whichmeans there is a substantial degree of global
synchrony. In this stage, as shown in Figs. 7(A) and (B), a large number of
brain areas have been fully synchronized at the local level. Among the
top twenty ranked brain areas in Fig. 7(C), 9 brain areas belong to frontal
lobe.While frontal areas are still dominant at this stage, there is no doubt
that more and more areas from other brain regions are catching up.

Instead of the classical view of sudden generalized synchronous ac-
tivities in SWepilepsy, our results are in favor of the alternative hypoth-
esis that initiation of SW epileptic seizure originates from specific brain
areas. The observation is largely in agreement with experimental stud-
ies based on brain imaging techniques (Amor et al., 2009; Holmes et al.,
2004; Pavone and Niedermeyer, 2000). For example, a study by Holmes
et al. (2004) used high density EEG combined with an inverse problem
algorithm suggests that the initial SWhad a clear anterior origin involv-
ing discrete focal regions of the frontal lobe (including dorsolateral,
orbital and cingulum areas). By graph theory analysis, we believe that
the frontal focus of SW epileptic seizures can be explained by the struc-
tural connectivity as well.

Reproducibility ona biologically realistic primate brain connectivity

In this section, to show the principal findings can be replicated, we
perform analysis on a biologically realistic primate brain connectivity
with different parcellation. The primate brain connectivity was obtained
from the CoCoMac database (Kotter, 2004), and has been successfully
used to study the role of space–time structure of brain connectivity in
the fluctuation of resting state networks (Ghosh et al., 2008). The con-
nectivity matrix of a single hemisphere collated from macaque tracing
studies comprises 38 nodes with weights ranging from 0 to 3.

The 36 cortical areas are listed in Fig. 8(A) (two thalamic nucleus
omitted). The connectivity matrix is shown in Fig. 8(B), where connec-
tivity strength is normalized so that themaximal strength is 1. To quan-
titatively explore the connectivity characteristics, we compute degree
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Fig. 7. Spatial distribution of local synchronization events at t=7 s. (A) A brain view of the amplitudes of local order parameters of brain areas. The figure includes sagittal, axial, and
coronal views of both hemispheres of the brain: (a) axial top to bottom, (b) axial bottom to top, (c) coronal front to back, (d) coronal back to front, (e) sagittal left to right (left
hemisphere), (f) sagittal right to left (left hemisphere), (g) sagittal right to left (right hemisphere), (h) sagittal left to right (right hemisphere). The color of nodes represents
the amplitude of local order parameters (which decreases from deep red to deep blue), the size of nodes represents the degree centrality, and the size of edges connecting two
nodes represents the strength of connectivity. (B) The Y-axis represents the amplitude of local order parameter and the X-axis represents the index of brain area. (C) Top twenty
ranked brain areas for the amplitudes of local order parameters.
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centrality and betweenness centrality of cortical areas, and the results
are shown in the bar graphs in Figs. 8(C) and (D), respectively. The
top ten brain areas for degree centrality and betweenness centrality
are also listed. For degree centrality, the top five areas are PFCORB,
PFCCL, PFCVL, PCIP, and TCS. For betweenness centrality, the top five
areas are PFCORB, PFCCL, PCI, CCA, and TCS. Among those brain areas,
PFCORB (orbital prefrontal cortex) and PFCCL (centrolateral prefrontal
cortex) are highly ranked across both measures, and can be identified
as structural hubs in terms of centrality.

To evaluate the temporal aspect of the coupling, the time delay
between any two coupled network nodes is estimated as the ratio d/v,
where d is Euclidean distance between two nodes in the three-
dimensional physical space and v the propagation velocity (Ghosh et al.,
2008). As realistic fiber tracking would generally result in longer path-
ways than the estimated shortest distance, the estimated time delay
represents a lower estimate.
We demonstrate the roles of coupling strengths, time delays, and
intrinsic frequencies in the emergence of global synchronization in
Figs. 9(A)–(F), where X-axis represents the scaling factor of local cou-
pling strength Slocal, Y-axis represents the scaling factor of global cou-
pling strength Sglobal, and the color represents the degree of global
synchronization. First, to study the influence of time delays on the glob-
al synchronization, we explore the 3 dimensional subspace (Sglobal,Slocal,
Sdelay) by choosing an intrinsic frequency f=4 Hz. As shown in
Figs. 9(A)–(C), the scaling factors of time delays are Sdelay=0(A),
Sdelay=0.2(B), and Sdelay=0.4(C), respectively. As the time delay in-
creases, the degree of global synchronization is decreased. Second, to
study the influence of intrinsic frequencies on the global synchroniza-
tion, we explore the 3 dimensional subspace (Sglobal,Slocal,f) by choosing
a scaling factor Sdelay=0.1 for time delays. The intrinsic frequencies in
Figs. 9(D)–(F) are 4 Hz, 8 Hz, and 12 Hz, respectively. It is clear that
higher intrinsic frequencies have the same effects as longer time delays.
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Fig. 8. Structural connectivity of the brain. (A) The list of anatomical areas of interests. There are 36 different anatomical areas of interests. In the table, each row corresponds to an
anatomical area, and the columns show the index and label of the area, and the name of the area. (B) The connectivity strength matrix (the connectivity strength is normalized so
that the maximal strength is 1). (C) The Y-axis represents degree centrality and the X-axis represents the index of brain area. Top ten ranked brain areas for degree centrality are
listed in the table. (D) The Y-axis represents betweenness centrality and the X-axis represents the index of brain areas. Top ten ranked brain areas for betweenness centrality are
listed in the table.
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To examine the time courses of global and local synchroniza-
tion, we choose a combination of parameter Sglobal=0.1, Slocal=1,
Sdelay=0.1, and f=4Hz. As shown in Fig. 10(A), the global synchro-
nization starts from an increase of local synchronization of some
brain areas, and increases significantly in hundreds of milliseconds.
The snapshots of global and local order parameters at t=7 s and
t=7.5 s are shown in the polar coordinate system in Figs. 10(B)
and (D). During early stage of initialization, at t=7 s, the degree
of synchronization is relatively small at both global and local levels.
The maximal amplitude of local order parameters is 0.1389, and the
amplitude of global order parameter is 0.0775. However, by the
time t=7.5 s, as shown in Fig. 10(D), many brain areas have become
locally synchronized, and the amplitude of global order parameter has
increased substantially to 0.6256.

To demonstrate the correlation between the degree of local syn-
chronization and the degree centrality, the amplitudes of local order
parameters of brain areas at t=7 s and t=7.5 s are compared in
Figs. 10(C)(E) and the top ten ranked brain areas are listed. In both
snapshots, the top five ranked areas are PFCORB, PFCCL, PFCVL, PMCDL,
and PMCM. Compared with the lists in Fig. 8, we see that the structural
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Fig. 9. Global synchronization in the parameter space of global and local coupling strength at different time delays and intrinsic frequencies. The X-axis represents the scaling factor
of local coupling strength Slocal, the Y-axis represents the scaling factor of global coupling strength Sglobal, and the color represents the amplitude of global order parameter. (A) Time
delay τ=0(v=0 m/s) (intrinsic frequency f=4 Hz). (B) Time delay τ=0.2τ0(v=5 m/s) (intrinsic frequency f=4 Hz). (C) Time delay τ=0.4τ0(v=2.5 m/s) (intrinsic frequency
f=4 Hz). (D) Intrinsic frequency f=4 Hz (time delay τ=0.1τ0(v=10 m/s)). (E) Intrinsic frequency f=8 Hz (time delay τ=0.1τ0(v=10 m/s)). (F) Intrinsic frequency f=12 Hz
(time delay τ=0.1τ0(v=10 m/s)).
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hubs identified (PFCORB and PFCCL) are highly ranked in the lists in
Fig. 10. This means global synchronization is initialized from a few “hot
spots” corresponding to brain areas with highest degree of centrality.
In addition, as shown in the lists in Fig. 10, brain areas from frontal
lobe are playing a dominant role in the initialization stage of the global
synchronization.
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Discussion

The choice of the model

As macroscopic models are very appropriate for describing epilep-
tic processes occurring on large-scale, those models have been widely
Fig. 10. The time courses of global and local synchronization. (A) The X-axis represents the
resent the amplitudes of local order parameters of brain areas, and the red line represents t
parameters of brain areas in the polar coordinate system at t=7 s. (C) The Y-axis represen
area at t=7 s. Top ten ranked brain areas for the amplitudes of local order parameters are lis
the polar coordinate system at t=7.5 s. (E) The Y-axis represents the amplitude of local o
ranked brain areas for the amplitudes of local order parameters are listed in the table.
applied to explore the mechanisms underlying the EEG seizure pat-
terns (Breakspear et al., 2006; Taylor and Baier, 2011; Wang et al.,
2012; Wendling et al., 2002). In terms of the spike-wave discharges,
an excellent example is the neural mass model proposed by the
group of Lopes da Silva (Lopes da Silva et al., 2003). For a given set
of parameters, the system has two simultaneous interictal and ictal
time, and the Y-axis represents the amplitudes of order parameters. The blue lines rep-
he amplitude of the global order parameter. (B) The global (red) and local (blue) order
ts the amplitude of local order parameter and the X-axis represents the index of brain
ted in the table. (D) The global (red) and local (blue) order parameters of brain areas in
rder parameter and the X-axis represents the index of brain area at t=7.5 s. Top ten
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attractors all the time, and to which attractor the trajectories con-
verge, depends on the initial conditions and the system's parameters.
Therefore, the model shows bistability with random external input as
the bifurcation parameter, and transitions between normal and sei-
zure states are caused by the variations in the external input.

In the past five years, neural field models have been successfully
used to study resting-state brain networks (Cabral et al., 2011; Deco
et al., 2009, 2011; Ghosh et al., 2008; Honey et al., 2007, 2009),
where simulations are performed on biologically realistic connectiv-
ity of brain areas, and the neural dynamics at each brain area is
modeled by a neural mass model (FitzHugh–Nagumo oscillator,
Wilson–Cowan oscillator, etc). Similarly, those neural mass models
can also be used to represent the dynamics of each area in the cur-
rent study. Especially, the bistable model (Lopes da Silva et al.,
2003) can be a good choice to describe the dynamics of each cortical
area as a bistable switch characterized by the Hopf bifurcation. In this
case, there are two stable states for each cortical area: a resting point
representing the normal state of the brain and a limit cycle representing
the seizure state. As the neural mass model actually describes the mean
activity of neuronal population, the resting point statically represents a
fully desynchronized state and the limit cycle represents a fully synchro-
nized state of each cortical area.

However, in the current study, we take a different approach. In-
stead of modeling each cortical area as a neural mass model, we
model each cortical area by a system of coupled oscillators described
by Kuramoto models. Therefore, instead of representing the activity
of cortical area by a fully synchronized state or a fully desynchronized
state, we are capable of quantifying the degree of synchronization of
each cortical area locally aswell as thewhole cortex globally. This offers
a better observation of the evolution of synchronization in both time
and space, and thus we can clearly see if some cortical areas are more
synchronized than others, or some areas are getting synchronized earlier
than others.

While suitable for describing the process of synchronization, we
would like to point out that the current choice of model does have
limitations in exploring the initialization of SWD. Especially, the current
model does not have sufficientmechanisms to reproduce the prototypic
waveform of SWD.

Relationship to cellular and synaptic mechanisms

Our study has suggested that the structural connectivitymay play an
important role in the generation of global synchronization and thus the
abnormality of white matter may contribute to the emergence of SW
epileptic seizures.

The suggested structural mechanism does not contradict the pro-
posed cellular and synaptic mechanisms (de Curtis et al., 1998;
Destexhe, 1998; Destexhe et al., 1996, 1998; Dichter and Ayala,
1987; Giaretta et al., 1987; Halliwell, 1986; Pollen, 1964; Schwindt
et al., 1988; Timofeev and Steriade, 2004; Timofeev et al., 2004;
Wong and Prince, 1978). It is possible that the combination of mech-
anisms from both perspectives leads to the initialization of SW epi-
leptic seizures. From a dynamical system point of view, intuitively,
there can be two regimes in a parameter space corresponding to
whether or not a global synchronization can emerge. We refer to
the regime where global synchronization emerges as a pathological
regime and the other as a physiological regime. The divisions of the
two regimes are largely determined by structural factors. For healthy
individuals, the brain structure is configured such that their “operat-
ing points” are located deeply inside the physiological regime. On
the other hand, for individuals suffering from SW epilepsy, while
the “operating points” are still in the physiological regime most of
the time, they are located so close to the boundary such that they
can be temporarily driven across the boundary under parameter per-
turbation. The cellular and synaptic mechanisms may be responsive
for such parameter perturbation. If the structure is configured in a
way that global synchronization can easily unfold, a temporary imbal-
ance between excitation and inhibition due to cellular and synaptic
mechanisms may lead to SW epileptic seizures.

Note that, while intuitive, the above delineation of system can be
too simplistic. Given the complexity of the system, it is necessary to
explicitly study the role of node dynamics and network structure as
an integrated whole. For example, in recent work (Gorochowski et al.,
2011), a comprehensive formalism called Evolving Dynamical Network
is introduced, and a newmodeling framework is defined to incorporate
network topology, dynamics, and evolution in an integrated way. This
combination can be a potential candidate to explain the emergence of
seizures because seizure generation typically involves the interplay of
both node dynamics (cellular mechanisms) and network structure
(synaptic connectivity).

Comparison with other experimentally inspired network studies

In fact, the abnormality of structural connectivity is often explored
in a localized pathologic brain region, which is typically the focus of
partial seizures. For example, in (Dyhrfjeld-Johnsen et al., 2007;
Santhakumar et al., 2005), the abnormal structural changes (mossy
fiber sprouting, mossy cell death, etc) in dentate gyrus are studied
to explore the genesis of temporal lobe epilepsy. The current study
differs from those works in the following aspects.

First, different types of epilepsies are being studied. While the cur-
rent work studies the emergence of abnormal hypersynchronization
(related to generalized spike-wave discharges) in the anatomical
structural network of human brain, the work (Dyhrfjeld-Johnsen et al.,
2007; Santhakumar et al., 2005) studies the genesis of temporal lobe
epilepsy (a focal epilepsy). As a result, the abnormality of structural
connectivity in (Dyhrfjeld-Johnsen et al., 2007; Santhakumar et al.,
2005) was explored in the localized pathologic region (dentate gyrus,
a part of hippocampal formation). Temporal lobe epilepsy is typically
believed to be related to the structural change in the anatomyof dentate
gyrus. In the surgically removed hippocampus from patients with tem-
poral lobe epilepsy, there can be major changes in the anatomy of den-
tate gyrus including cell death, formation of new synaptic connections
as axons sprout, etc.

Second, due to the differences in the object being studied, different
computational models are being used as well. The current work is
based on amacroscopic model, which is more appropriate for describing
epileptic processes occurring on large-scale (such as the whole brain).
The work (Dyhrfjeld-Johnsen et al., 2007; Santhakumar et al., 2005), on
the other hand, is based on a detailed biophysical neuron network
model of dentate gyrus.

White fiber abnormality

In this study, the role of brain structural connectivity in the emer-
gence of global synchronization is examined by globally scaling the
connectivity strength and fiber length matrices, which means the
relative connectivity strength and fiber length between brain areas
is assumed to be invariant. However, for patients with SW epileptic
seizures, it is very possible that the relative connectivity strength
and fiber length are varied. Recently, cross-sectional studies of chil-
dren, adolescents and young adults with idiopathic generalized epi-
lepsies (IGE) including childhood absence and juvenile myoclonic
epilepsy have reported distributed patterns of abnormality predomi-
nantly affecting thalamus and frontal lobe (Betting et al., 2006a,
2006b, 2006c; Caplan et al., 2009a, 2009b; de Araujo et al., 2009;
Kim et al., 2007; Pardoe et al., 2008; Pulsipher et al., 2009; Tae et
al., 2006, 2008; Tosun et al., 2011). Collectively, these studies clearly
indicate a neurodevelopmental contribution to anatomic abnormali-
ties that have been observed in adults with these syndromes of
epilepsy (Hermann et al., 2009). Along the same line, this may be
able to explain the close relationship between absence epilepsy and
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age. The fact that absence epilepsy can be outgrown might be related
to the development of cortical connections, and there has been evi-
dence suggesting that the development of cortical connections has a
large influence on the coherence of brain activities. For example, a
study (Thatcher et al., 2008) was conducted to explore human devel-
opment of EEG coherence and phase differences over the period from
infancy to 16 years of age. The results show that phase differences
increase in the long inter-electrode distance as a function of age.
The larger phase differences may imply that global synchronization
becomes more difficult to happen as age increases. To fully shed light
on this problem, more quantitative MRI studies examining patterns of
brain development compared to healthy controls are needed, and it
would be very interesting to carry out computational studies based on
the brain connectivity of patients suffering from SW epilepsy.

The characteristic frequencies of global synchronization

In the past few years, existing computational studies have demon-
strated the important role of the characteristic “small-world” struc-
ture of the underlying connectivity matrix between different brain
areas in the spontaneous emergence of spatio-temporally structured
network activities (Cabral et al., 2011; Deco et al., 2009, 2011;
Ghosh et al., 2008; Honey et al., 2007, 2009). Especially, recent studies
(Cabral et al., 2011; Deco et al., 2009) have revealed that the slow
fluctuating and anti-correlated spatiotemporal patterns in resting
state are linked to fluctuations in the neural activity and synchrony
in the gamma range, and the most agreement occurs for a set of
parameters (coupling, delay, noise, etc) where subsets of brain areas
tend to synchronize in clusters while the network is not globally syn-
chronized. In this computational study, we demonstrate another as-
pect of structural functional relationship at different time scales:
while neural populations can exhibit oscillations in a wide range of
frequency bands, global synchronization in the brain scale only occurs
at low frequencies. We explain this by the interplay between time de-
lays associated to the structural connectivity and intrinsic frequencies
associated to neural populations. In this regard, we believe the low
characteristic frequencies of SWD are partially owning to the under-
lying anatomical connectivity. More interestingly, our results agree
with existing experimental observations: while long range synchroni-
zation at high frequencies (gamma rhythms) does exit in separate
parts of the brain (Varela et al., 2001), the scale of such synchronization
is quite limited compared with the generalized synchronization in SW
epileptic seizures. Another thing worth mentioning is that, just like
the resting state, global synchronization is another special case of the
brain state. It would be much more difficult but worth investigating to
explain the synchrony underlying normal brain functions in the pres-
ence of explicit tasks.

Frontal epileptic focus

By examining the interplay of local and global synchronization,
our results not only demonstrate that the initialization of global syn-
chronization has a clear anterior origin involving discrete areas of the
frontal lobe (including dorsolateral part of superior frontal gyrus,
supplementary motor area, middle frontal gyrus, etc), and but also
indicate that the initialized areas of global synchronization(“hot
spots”), correspond to the nodes with highest degree of centrality
(“structural hubs”). The observations of frontal focus are largely in
agreement with experimental studies based on brain imaging tech-
niques. For example, a study by Pavone showed that the origin of
the spike-waves is cortical with maximal frontal lobe involvement
(Pavone and Niedermeyer, 2000). Furthermore, a study by Holmes
used high density EEG combined with an inverse problem algorithm
to determine the location of the first SWD generators on an anatom-
ical MRI template. Despite inter-individual variability in the precise
location, the initial SWD had a clear anterior origin involving discrete
focal regions of the frontal lobe (including dorsolateral, orbital and
cingulum areas) (Holmes et al., 2004). More recently, a study by Amor
(Amor et al., 2009) explored the spatiotemporal dynamics of interac-
tions within and between widely distributed cortical sites using
magnetoencephalographic recordings of absence seizures and revealed
a multifocal fronto-central network, comprising the right prefrontal
mesial, left orbitofrontal and left lateral postcentral areas of the cortex.
While experimental observations of frontal epileptic focus do exist,
there is a lack of understanding of the underlying mechanisms. To the
best knowledge of the author, it is the first time that an explanation is
given based on a computational study with the time-space structure
of biologically realistic connectivity of 80 human cortical areas.

Note that, in the current study, all nodes are assumed to be identical
and a “hot spot” simply means a node, which becomes synchronized
earlier than others as a result of network structural connectivity. It
does not mean the node in itself is abnormal, which drives the epileptic
activity of the network. As a result, the current computational study can-
not rule out the possibility that the node in itself is also abnormal. In fact,
from a development point of view, due to some seizure induced changes,
a normal node may also become abnormal if the network structure
makes it always the starting point of seizures.
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