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Abstract—This paper presents two highly integrated receiver
circuits fabricated in InP heterojunction bipolar transistor (HBT)
technology operating at up to 2.5 and 7.5 Gb/s, respectively. The
first IC is a generic digital receiver circuit with CMOS-compatible
outputs. It integrates monolithically an automatic-gain-control
amplifier, a digital clock and data recovery circuit, and a 1 : 8
demultiplexer, and consumes an extremely low 340 mW of power
at 3.3 V, including output buffers. It can realize a full optical
receiver when connected to a photo detector/preamplifier front
end. The second circuit is a complete multirate optical receiver
application-specific integrated circuit (ASIC) that integrates a
photo diode, a transimpedance amplifier, a limiting amplifier, a
digital clock and data recovery circuit, a 1 : 10 demultiplexer,
and the asynchronous-transfer-mode-compatible word synchro-
nization logic. It is the most functionally complex InP HBT
optoelectronic integrated circuit reported to date. A custom
package has also been developed for this ASIC.

Index Terms—Heterojunction bipolar transistor, indium phos-
phide, optical receiver, optoelectronic integrated circuit.

I. INTRODUCTION

T HERE is a growing need for high-performance and low-
power optical receiver circuits in order to exploit the ever

increasing bandwidth offered by fiber-optic communication
in both terrestrial and spaceborne applications. InP-based IC
technology is well suited to implement these circuits because
of the inherent high device speed and the compatibility of
the material system with the 1.3–1.55-m wavelength fiber
systems that exhibit low loss and low dispersion. InP hetero-
junction bipolar transistor (HBT) IC technology, for example,
has achieved device exceeding 150 GHz and divider circuit
speed of 44 GHz [1]. InP pin-HBT optoelectronic integrated
circuits (OEIC’s) have demonstrated bandwidth of 23 GHz [2].
Fig. 1 shows the block diagram of a typical optical receiver.
It consists of several functional blocks, each of which is
commonly implemented in one or more IC’s [3], [4]. The
recognition that a higher level of integration of these functional
blocks could lead to better performance, lower system cost,
and better reliability was the driving force behind the whole
arena of OEIC and integrated receiver development in recent
years [5]–[7]. Many integration efforts, however, were directed
toward multiple channels of the relatively simple front-end
blocks (photo diode and amplifiers) [8], [9]. No InP-based IC
result has been published on integrating the clock and data
recovery (CDR) circuit and the demultiplexer to the front end.
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Fig. 1. Functional block diagram of a generic optical receiver.

Part of the reason was believed to be the relative immaturity
of the fabrication technology, which limited circuit yield.

We developed two highly integrated receiver IC’s in InP
HBT technology that achieved a new level of functionality and
performance. The first [10] was a 2.5-Gb/s generic receiver IC
that consumed extremely low power with high functional in-
tegration. It monolithically integrated a wide-band automatic-
gain-control (AGC) amplifier, a digital CDR circuit, and a 1 : 8
demultiplexer (DEMUX). It consumed only 340 mW power
at 3.3 V, including nine CMOS-compatible output buffers.
As a comparison, a somewhat similar circuit implemented in
SiGe technology consumes more than 1 W of power [11]. Our
receiver IC could realize a full optical receiver system when
connected to a photo detector/preamplifier front-end OEIC.
It is especially suitable for satellite-based communication
applications where low power and high data rate are important.

The second IC [12] achieved an even higher level of per-
formance and integration: a 7.5-Gb/s complete optical receiver
consisting of a photo diode, a transimpedance amplifier (TIA),
a limiting amplifier (LAMP), a digital CDR circuit, a 1 : 10
DEMUX, and the word synchronization logic. It consisted
of 2100 transistors and was the most functionally complex
InP HBT OEIC reported to date. This application-specific
integrated circuit (ASIC) had multirate capability and was
designed specifically for the current and next-generation space-
borne fiber-optic data bus (SFODB) environment [13], which
required small size, low power, and radiation hardness. This
data bus was encoded with the 8-B/10-B coding scheme and
adopted the asynchronous transfer mode (ATM) data structure.

II. DESIGN OF THE 2.5-GB/S IC

The circuit was implemented with a very-high-speed InP-
based HBT technology [14]. This technology allows us to
implement both analog and digital circuits on the same sub-
strate operating off a single 3.3-V supply. The AGC amplifier
was designed for high sensitivity and high dynamic range
requirements. Common-mode logic (CML) was used in all the
digital circuit blocks. Differential signal lines were maintained
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Fig. 2. Schematic of the AGC amplifier.

throughout the whole circuit except between the loop filter and
the voltage-controlled oscillator (VCO) and at the CMOS-
compatible outputs.

A. AGC Amplifier

The integrated receiver included a wide-band AGC
amplifier. The first stage was a variable-gain stage in the
Gilbert-cell configuration as shown in Fig. 2. The second and
third gain stages were dc-coupled emitter-coupled pairs with
emitter-follower buffers, with the second stage employing
transimpedance loading to increase the stage bandwidth. A
full differential signal path was used. DC balance in the
circuit was maintained using a dc restoration loop between
the output of the third stage and the input of the second stage.
Control voltage for the variable-gain stage was provided
by a differential full-wave rectifier implemented using four
diode-connected transistors. The diodes were biased at 10

A, reducing the AGC detector dead zone to 2 Bypass
capacitors required in the AGC detector, AGC loop, and dc
restoration loop were implemented both on- and off-wafer
to cover the wideband. To minimize power consumption, all
gain transistors were operated at a low 510 A/cm current
density. This reduced transistor to about 20 GHz from the
peak value of 75 GHz (at 7 10 A/cm ). The amplifier was
designed for a target of 30-dB gain and 2.5-GHz bandwidth.

B. CDR

The CDR consisted of a digital phase-locked loop (PLL)
and a decision circuit, as shown in Fig. 3. The PLL contained
a phase detector, a loop amplifier/filter, and a VCO [15]. The
phase detector was the “bang-bang” type that consisted of two
flip-flops, one for sampling the clock at the rising edges of the
data and the other at the falling edges. No frequency detector
was included in this design. The VCO, as shown in Fig. 4,
was the multivibrator design that required no external passive
components. In addition to being controlled by the output of
the loop filter, the VCO was designed to be externally tuned
with a dc voltage over the frequency range from 2 to 3 GHz.

Fig. 3. Block diagram of CDR.

Fig. 4. Schematic of the multivibrator VCO.

This coarse tuning was designed to offset the effects of process
and device variations. Fig. 5 shows the loop filter we used,
which was slightly different than the one in [15].
It had an active stage where the gain could be optimized for
the best loop performance. Only one off-chip filter capacitor
was needed to set the loop bandwidth. The targeted pole and
zero frequencies of the loop filter were 0.5 and 15 MHz,
respectively. Extensive SPICE simulation of the loop was
performed to verify the locking characteristics of the PLL.
The decision circuit was made up of a single flip-flop. This
CDR design used devices very efficiently, containing fewer
than 90 transistors total.
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Fig. 5. Schematic of the loop filter.

Fig. 6. Schematic of the CMOS-compatible output buffer of the 2.5-Gb/s
receiver IC.

C. DEMUX and Output Buffers

The DEMUX employed the tree-type architecture for low
power consumption. Power was saved when the clock rate
was halved for every stage through which the data moved.
The output buffers were designed for CMOS levels using a
totem-pole configuration, as shown in Fig. 6. The output stage
had its own power-supply pad to isolate any switching noise
from coupling back to the rest of the circuit. There were nine
such output buffers, eight for the data and one for the clock.

III. D ESIGN OF THE 7.5-GB/S ASIC

The functional block diagram of the 7.5-Gb/s optical re-
ceiver ASIC is shown in Fig. 7. This circuit shared many basic
building blocks with the 2.5-Gb/s circuit, with appropriate
size modifications for higher speed operation. Only design
considerations with topological differences with the 2.5-Gb/s
design are discussed below.

A. Application-Specific Architecture

The current SFODB operates at the SONET OC-48 rate of
2.48 Gb/s. It is expected that the data rate of future SFODB’s
will continue to increase. The next rate up will be the OC-
96 environment of 4.96 Gb/s. Accounting for the coding
scheme and other communication overheads associated with
the ATM protocol, an overhead factor of 1.458 is needed,

Fig. 7. Functional block diagram of the 7.5-Gb/s integrated optical receiver
ASIC.

bringing the physical bit-rate requirement of the receiver to
7.23 Gb/s. Our receiver was designed to operate at multiple
rates, from a maximum of 7.5 Gb/s down through 3.6, 1.8,
and 0.9 Gb/s (divided by two, four, and eight, respectively).
The data format was in 8-B/10-B code, in which two extra bits
were incorporated to each 8-bit byte to make up a 10-bit word.
This code provided better dc-balance by limiting the maximum
run length to five. Another important benefit of coding the data
was to support nondata sync word for word synchronization.

The SFODB [13] has a simple time division multiple access
frame structure. The basic “payload” data cell has been chosen
to be the ATM cell with 48 bytes of data and five bytes
of header, for a total cell length of 53 bytes. Three bytes
of frame overhead are attached before each ATM cell to
form a slot. Thirty-two slots constitute an SFODB master
frame. The very first three frame overhead bytes include the
frame sync word (K28.5 or K28.7 in 8-B/10-B code). This is
summarized in Fig. 8. Our receiver design would be able to
detect these two word patterns (and their complements) for
word-synchronization purpose.

B. Photo Diode, Transimpedance, and Limiting Amplifiers

A PIN photo diode was integrated on-chip using the base-
collector junction of the HBT structure. The diode area was
15 m in diameter, optimized for bandwidth and alignment
requirements. Since the photo diode shared the same base-
collector layers as the HBT structure, a tradeoff had to be made
for the collector thickness. A thicker collector would improve
the responsivity of the photo diode but degrade the frequency
response of the HBT device. As the SFODB was a short-haul
fiber communication environment, the sensitivity requirement
of the receiver was on the order of 0 dBm. This allowed us to
use our baseline HBT process with a 0.7-m-thick collector.

Signal amplification was provided by a TIA and a LAMP
to reduce the dynamic range seen by the CDR circuit. The
TIA, as shown in Fig. 9, was a single-ended common emitter
gain stage with collector-to-base feedback. Its output fed both
the differential inputs of the LAMP with a low-pass filter
inserted along one but not the other input. This connection
scheme provided a single-to-differential signal conversion for
signal frequency above the cutoff frequency of the low-pass
filter. The LAMP input with the low-pass filter was effectively
grounded above the cutoff frequency. Signals along the other
input path therefore got amplified. Below the cutoff frequency,
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Fig. 8. SFODB frame structure showing one frame of data.

Fig. 9. Schematic of the transimpedance amplifier and its interface to the
limiting amplifier.

the low-pass filter had little effect on the signal passing through
it. As a result, the differential input paths of the LAMP saw the
same signal, which canceled each other. This coupling scheme
required only one blocking capacitor instead of two. The short
run length in the data stream called for a cutoff frequency
that could be as high as 10 MHz, which allowed the capacitor
to be implemented on-chip. The result was the saving of two
bonding pads (and the external passive elements associated
with them) and of significant chip area.

The LAMP incorporated only the first and last gain stages
and the dc restoration loop of the AGC amplifier of the 2.5-
Gb/s design, with modification to the bias current to reflect
a higher bandwidth but lower gain requirements. The AGC
circuit portions were not needed in this amplifier because the
data stream had a relatively small dynamic range of 10 dB.

C. CDR

The block diagram of the CDR circuit was similar to
that of the 2.5-Gb/s design except a digital prescalar was
inserted after the buffer in the PLL to enable multirate
operation. Two CMOS-compatible inputs selected one of
four possible prescalar ratio—divided by one, two, four, and
eight—allowing the PLL to operate at the corresponding four
data rates. Learning from test data collected from the 2.5-Gb/s
design, we added an on-chip capacitor in parallel with the

Fig. 10. Schematic of the loop filter for the 7.5-Gb/s circuit with the extra
on-chip capacitorC.

serial branch in the loop filter, as shown in Fig. 10. It
in effect added a pole to the loop filter response, compensating
for the zero generated by the parasitic inductance on the leads
of the external capacitor.

D. DEMUX and Bit Counter

The recovered bit data were converted into word data by
a 1 : 10 (due to the 8-B/10-B data coding) DEMUX. Fig. 11
shows the schematic of the DEMUX, which had a serial-in,
parallel-out and a parallel-in, parallel-out shift registers instead
of the tree structure of flip-flops because the word length
was not an integral power of two. It required two clocks: the
recovered bit clock and a “narrow” word clock with the same
pulse width as the bit clock but with only 5% duty cycle. The
narrow word clock was converted from the recovered clock by
the bit counter, which also generated the output word clock
of 50% duty cycle. The schematic of the bit counter is shown
in Fig. 12. It had a bit-slip mode that counted up to 11 bit
clock pulses before the two word clocks were generated. This
mode was used to shift the boundary of the word until a sync
word was detected.

E. Sync Logic

The digital sync logic consisted of the sync compare and
three resettable counters (word, slot, and frame counters),
which counted according to the ATM cell protocol, as de-
scribed above. The word counter could count up to 53 or 56,
the slot counter to 32, and the frame counter to a programmable
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Fig. 11. Schematic of the demultiplexer for 8-B/10-B coded data.

Fig. 12. Schematic of the bit counter.

number between one and 16, all of which used the same toggle
flip-flop as the basic building block. The schematic of the
frame counter is shown in Fig. 13. The other two counters
had similar schematics with minor modifications reflecting the
difference in the number of stages (five for the slot and six for
the word counters), the decoding logic, and the programmable
feature (one select control for the word counter and none for
the slot counter). The output of the frame counter was the bit-
slip signal, which caused the bit counter to slip a bit when
no sync word was detected in the sync compare circuit within
the specified frames of data. Upon detection of a sync word,
the sync compare circuit would send out a sync signal to reset
the three counters. To take advantage of the slower operating
speed of these counters, part of their logic was implemented
with single-endedNOR gate for saving chip area.

F. Interconnects and I/O

To maintain signal integrity over on-chip long interconnects,
differential signal lines were routed adjacent to each other.
Source and load termination that matched the metal line
impedance (about 90 ) were also incorporated at selected
long, high-speed signal paths, such as those between the CDR
and the DEMUX, which ran for about 4 mm. All control inputs
were CMOS compatible except that the polarity of the power
supply had to be reversed, i.e., a logic “1” is near 0 V while
a logic “0” is near 3.3 V. All outputs had differential CML
drivers capable of delivering 400-mVsignals to a 50- load.

IV. FABRICATION

Both receiver IC’s were successfully fabricated in our in-
house 3-in IC line utilizing the baseline InP HBT technology
[14], which employed a 2 2 m emitter size transistor
with a peak of 75 GHz. Two layers of metal were used for
interconnect. For the 7.5-Gb/s IC, the integrated photo diode

was implemented with the same base-collector junction as the
HBT structure. Two additional masking steps were needed to
define and coat the photo diode.

The photomicrograph of the 2.5-Gb/s receiver IC is shown
in Fig. 14. It measured 2.8 2.35 mm and consisted of
approximately 550 transistors. Two-thirds of the area was
occupied by the DEMUX and the output buffers.

The photomicrograph of the 7.5-Gb/s optical receiver ASIC
is shown in Fig. 15. It consisted of about 2100 transistors and
was pad-limited to an area of 4.153.1 mm Defect control
was a critical requirement for yielding this relatively large cir-
cuit. We have grown epi wafers that have random defect den-
sity of less than 100 per cmIn our first fabrication lot, a best
wafer yield of 10% was achieved. This yield level represented
a progressively maturing InP HBT fabrication process that al-
lowed us to continue to develop IC’s of increasing complexity.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. 2.5-Gb/s IC

We have performed on-wafer tests of the receiver IC.
Test results of individual functional blocks were obtained
from drop-in test cells. The frequency response of the AGC
amplifier is shown in Fig. 16. Maximum gain of about 28
dB with 2-GHz bandwidth was observed. These results were
within about 20% from simulation. Resonance between the
external capacitors and probe inductance resulted in in-band
resonance. This was subsequently eliminated by damping
resistors in the 7.5-Gb/s design. The power consumption of
the AGC amplifier was about 20 mW.

The CDR exhibited satisfactory locking behavior. It had a
lock-in range of about 30 MHz when locked at a 2.1-Gb/s data
stream. Moreover, the locking frequency could be externally
tuned over more than a 1-GHz span. When tested with a 21
pseudorandom bit stream (PRBS), the recovered data achieved
a bit error rate (BER) of less than 10 with 9.6-ps rms jitters.
The eye diagram of the recovered data is shown in Fig. 17. The
CDR portion of the chip consumed about 90 mW of power.

The rest of the IC also performed properly as measured
from the integrated receiver chip. The data output voltage
swing, when measured with a high-impedance scope with 20-
pF capacitive loading, was 900 mV at 310 Mb/s and 1.5
V at 60 Mb/s. In the realistic multichip-module environment
where a CMOS load was about 5 pF, a factor of four speedup
was expected for the same voltage swing. So the IC was
expected to provide a 1.5-V output swing at 240 Mb/s, or
1.92-Gb/s input bit rate. The nine output buffers consumed
only 80 mW of power.

The power consumption of the whole chip was only 340
mW. This extremely low power level reflected the intrinsic
high bandwidth of the InP HBT technology as well as its
capability to trade speed for power. In fact, all transistors in the
receiver were operating at current densities significantly below
their maximum point. Efficient implementation of the CDR
such as using a multivibrator instead of a ring oscillator VCO
also contributed to the low power. The CMOS-compatible
output buffers employed the push–pull-style circuits to further
conserve power.
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Fig. 13. Schematic of the frame counter.

Fig. 14. Photomicrograph of the 2.5-Gb/s integrated receiver IC.

B. 7.5-Gb/s IC

We have performed extensive on-wafer tests on the 7.5-
Gb/s receiver ASIC. By segmenting the power-supply nets to
the various functional blocks and providing intermediate I/O
points to the full ASIC, we eliminated the need to include
drop-in test cells on the wafer. The performance of each
functional block could be measured directly from the full
ASIC itself. An optical signal of 1550 nm was fed through
a single-mode fiber, which was mounted slightly tilted from
the vertical on a micromanipulator and was aligned over the
photo diode by monitoring the photo diode bias current. The
frequency response of the front-end circuits, which included
the photo diode, the TIA, and the LAMP, was measured
using an HP 8703A lightwave component analyzer. Measured

Fig. 15. Photomicrograph of the 7.5-Gb/s integrated optical receiver ASIC.

responsivity, transimpedance gain, and bandwidth were 0.51
A/W, 650 , and 4.4 GHz, respectively, as shown in Fig. 18.
The measured gain and bandwidth were within 20% from
simulation, the discrepancy being primarily attributable to the
circuit parasitics. For testing the rest of the circuit, a laser
diode modulated by a BER test set was used as the input
signal source. The VCO of the CDR could be externally tuned
with a dc voltage over more than 15% frequency span. The
BER of the recovered data at 7.6 Gb/s was measured to be less
than 10 , with a 2 1 PRBS input of 0-dBm power. The
eye diagrams of the LAMP output and the recovered data are
shown in Fig. 19. Very open eye is observed for the recovered
data. Optical sensitivity of the CDR recovered data (not just
at the output of the LAMP) was 4.2 dBm at a BER of 10
We expected the sensitivity at the 1300-nm wavelength to be
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Fig. 16. Frequency response of the AGC amplifier.

Fig. 17. Eye diagram of recovered data of CDR with 2.1 Gb/s, 27
� 1 PRBS

input; waveform had 9.6-ps rms jitters.

better because of the higher responsivity of the photo diode.
The relatively low sensitivity of this receiver did not reflect the
inherent capability of the technology [6] but rather the input
specifications of the ASIC, which did not require amplifiers
with high gain. In other words, the sensitivity was not noise
limited but rather gain limited. The demultiplexed data and
word clock output waveforms are shown in Fig. 20, with about
400-mV swing. The chip consumed about 3 W of power,
a relatively low budget considering the high functionality and
performance of the circuit.

A custom package has been developed for the optical
receiver ASIC, as shown in Fig. 21. The optical fiber was
horizontally mounted with optical signal reflected at an angle
cut over the photo diode. A 2.7-dB fiber link loss was
measured. No other significant performance loss due to the
packaging was measured. Further environmental tests will be
performed on the packaged units.

VI. CONCLUSION

We have successfully designed, fabricated, and tested two
highly integrated receiver IC’s in InP HBT technology for

Fig. 18. Frequency response curve (measured current at output of LAMP
normalized to input optical power) of front-end circuits of the 7.5-Gb/s optical
receiver ASIC.

(a)

(b)

Fig. 19. Eye diagram of the (a) output of LAMP and (b) CDR recovered
data with a 27 � 1 PRBS input at 7.61 Gb/s.

2.5- and 7.5-Gb/s optical communication applications. The first
IC consisted of an AGC amplifier, a clock and data recovery
circuit, and a demultiplexer, and consumed only 340 mW of
power. The measured data have validated our design approach
and have demonstrated the potential of the InP HBT technol-
ogy to integrate analog and digital functions for low-power and
high-speed applications. The second IC was a fully integrated
optical receiver ASIC that monolithically integrated all the
critical components, including the photo diode, the amplifier
stage, the clock and data recovery circuit, the demultiplexer,
and the word-synchronization logic. It consumed 3 W of power
and consisted of 2100 transistors. The capability and level of
maturity of the InP HBT technology in implementing mixed-
mode, high-speed, and complex optoelectronic circuits has
been demonstrated. Achieving even lower power is feasible
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(a)

(b)

Fig. 20. Demultiplexed (a) data and (b) word clock output waveforms at
731 MHz.

Fig. 21. Packaged optical receiver ASIC with lid removed.

through device scaling. Additional functionality such as fre-
quency detection, lock indication, and data decoding can be
included in future integration.
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