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Abstract|With appropriate device structures, com-
bined lithographic and epitaxial scaling of HBTs, RTDs
and Schottky diodes results in rapid increases in de-
vice bandwidths. 0.1 ¹m InGaAs RTDs have oscillated
at 650 GHz, Submicron heterojunction bipolar tran-
sistors (HBTs) fabricated with substrate transfer pro-
cesses have obtained 21 dB unilateral power gain at 100
GHz; if extrapolated at -20 dB/decade, this corresponds
to a 1.1 THz power-gain cuto® frequency. HBT current-
gain cuto® frequencies as high as 300 GHz have been
obtained.

I. Introduction

DEVICE scaling {reduction of layer thicknesses
and lithographic feature sizes { is central to high

frequency semiconductor device design. As CMOS
gate lengths have been reduced, clock rates have pro-
gressively increased. 0.13 ¹m Si MOSFETs exhibit
»70 GHz f¿ . Compared to silicon, III-V compound
semiconductors o®er higher electron mobilities, higher
electron saturation drift velocities, and stronger het-
erojunctions, hence III-V semiconductor devices can
obtain higher bandwidths than their silicon counter-
parts. Yet III-V devices must be aggressively scaled
to deep submicron dimensions if they are to remain
competitive with silicon.
III-V heterojunction bipolar transistors (HBTs), in

particular, have not been adequately scaled. GaAs-
and InP- based HBTs are typically fabricated at 1{2
¹m minimum feature sizes and operate at 1{2 £105
A=cm2. This is in marked contrast to both III-V
HEMTs, where 0.1 ¹m gate lengths are typical, and
Si/SiGe HBTs, where emitter widths are 0.1 ¹m [1]
and emitter current densities are as high at 106 A=cm2.
Because of this aggressive scaling, Si/SiGe HBTs are a
major competitive threat to III-V HBTs. Addressing
this, we have developed InAlAs/InGaAs HBTs with
submicron emitter and collector dimensions, and have
obtained 1 THz (extrapolated) power-gain cuto® fre-
quencies (fmax) and 300 GHz current-gain cuto® fre-
quencies (f¿ ). Challenges in HBT submicron scal-
ing include collector de¯nition, emitter parasitic resis-
tance, and support of high collector current densities.

Scaling laws and scaling examples

We will develop HBT scaling laws by ¯rst consider-
ing high frequency diodes. Dominant time constants

Mark Rodwell, Y. Betser, S. Jaganathan, T. Mathew, PK
Sundararajan, Y. Wei, M. Urteaga, D. Scott, and S. Long are
with the Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106, USA. rod-
wellece.ucsb.edu. S.C. Martin is with Jet Propulsion Labs,
Caltech, Pasadena, CA. R. P. Smith was with Jet Propulsion
Labs, Caltech, Pasadena, CA, and is now with Cree Research,
Durham, NC, USA

D

W
L

Schottky-collector RTD

Transferred-Substrate HBT
base emitter

collector

drain

HEMT (Schottky gate FET)
source gate

Principle of Scaling

Deep Submicron Schottky

C ∝ WL /D
R ∝ 1/ L

C ∝ W /D

τ transit ∝ D /velectron

→
s

Rs
R = kT /qI

C ∝ WL/ ID→
j

Rj ∝ 1 /JD

Rs
Rj

C

2:1 thinner epitaxial layers
4:1 smaller lithographic dimensions
4:1 increased current density
resistanceless (Schottky) top contacts

→2:1 increased device bandwidth

Fig. 1. Scaling laws for high-frequency devices

for Schottky diodes are shown in ¯g. 1. The device has
a junction impedance Rj = kT=qI, a depletion capac-
itance C and a parasitic series resistance Rs arising
from the bulk resistivity of the buried N+ layer and
its Ohmic contacts. Given junction depth D, there is
a transit time ¿transit / D=velectron. Given junction
width W , there is capacitance C /WL=D. Given de-
vice stripe length L, the buried layer & bottom contact
resistance Rs varies as 1=L.

We wish to double the device bandwidth. This re-
quires thinning the depletion layer 2:1 to proportion-
ally reduce ¿transit. In reducing D 2:1 with W left
unchanged, we have doubled the device capacitance,
doubling RsC. Our intent is instead to decrease RsC
by 2:1; to do this we must now decrease the contact
stripe width W by 4:1. With this combined scaling,
C has now been reduced to 1=2 its original value.
If the current I is left unchanged, the time constant
RjC = (kT=qI) ¢C is thus also reduced by the desired
2:1 ratio. Note that the device junction area WL has
been reduced 4:1; the device current density has thus
been increased fourfold.

These are the scaling laws for Schottky mixer diodes.
Each desired 2:1 increase in device bandwidth requires
a 2:1 reduction in epitaxial layer thicknesses, a 4:1 de-
crease in junction width (lithographic scaling), and a
4:1 increase in operating current density.

Exploiting such scaling, Siegel et al have reported
submicron Schottky mixers diodes with low noise at
2.5 THz [3], [4]. Figure 2 shows a 0.1 ¹m £0:5 ¹m T-
gate Schottky diode (with 150 ºA depletion thickness)
used for submillimeter-wave harmonic mixing [2].

Unlike Schottky diodes, PN diodes have both anode



Fig. 2. Submicron (0:1¹m £0:5¹m) Schottky mixer diode with
150 ºA depletion depth. Calculated RC and transit-time
cuto® frequencies are » 15THz.

(top) and cathode Ohmic contacts. The top contact
has resistance Rtop = ½contact=LW , resulting in a time
constant RtopC / ½contact=D. Since a 2:1 desired im-
provement in device speed required a 2:1 reduction, in
D (for reduced transit time), the required 2:1 reduc-
tion on RtopC requires a 4:1 improvement in ½contact.
Devices with top Ohmic contacts can be very di±cult
to scale: each 2:1 improvement in device speed requires
a 4:1 improvement in contact resistivity.
Lack of minority carrier storage is an often-cited

speed advantage of Schottky diodes over their P-N
counterparts; elimination of the top Ohmic contact is
an advantage of equal signi¯cance. Zero gate contact
resistance is a crucial advantage of the (Schottky-gate)
MESFET / HEMT [5] over the JFET; in the JFET,
gate Ohmic contact resistance increases as the gate
length is reduced.

II. Schottky-collector RTDs

A resonant-tunnel diode (RTD) has an equivalent
circuit similar to that of the Schottky diode shown in
¯g. 1. The device has a negative resistance Rn re-
placing Rj of the Schottky diode, plus series resistance
Rtotal = Rs + Rtop and depletion capacitance C. Rn
varies as 1=Ipeak, the peak tunneling current density.
If the electron storage time in the quantum well ¿qw is
negligible, the device maximum oscillation frequency
is fmax = (1=2¼C)(RnRtotal)

¡1=2; if ¿qw is dominant,
fmax = (1=2¼)(RnRtotal)

¡1=4C¡1=2¿¡1=2qw .
RTD scaling follows the rules above. Current den-

sities must be high. Depletion layers must be thin
to avoid high transit times. Lithographic scaling re-
duces the RsC time constant. If the RTD has a top
Ohmic contact, then reduction of RtopC to values nec-
essary for submillimeter-wave oscillation requires very
low contact resistance, and InAs contacts [6] are then
employed. Yet, the RTD top Ohmic contact is unneces-
sary, and can be replaced by a direct Schottky contact
to the fully-depleted electron drift layer, thereby elimi-
nating Rtop. An RTD with a 0.1 ¹m T-gate Schottky
contact, 350 ºA depletion thickness, and 5 ¢ 105 A=cm2

Fig. 3. 0.1 ¹m InGaAs/AlAs Schottky-collector RTD.

Fig. 4. A 64-element, 650 GHz, RTD quasi-optical array oscil-
lator.

current density (¯g. 3) has a estimated (but not mea-
sured) 2 THz fmax. 64-element monolithic arrays of
Schottky-collector RTDs have oscillated at 650 GHz
(¯g 4) [2].

III. HBT scaling

An HBT is a pair of coupled diodes, and follows scal-
ing laws similar to the Schottky diode. A 2:1 desired
improvement in HBT bandwidth requires 2:1 reduction
in base and collector transit times, requiring a

p
2 :1

reduction in the base and a 2:1 reduction in the col-
lector epitaxial layer thicknesses. For a 2:1 improve-
ment of all HBT RC and delay terms, the emitter-
base and collector-base junction widths (lithographic
feature size) must also be reduced 4:1, the collector
current density increased 4:1, and the emitter Ohmic
contact improved 4:1.

A. Transferred-Substrate HBTs

An immediate di±culty is the required reduction
in the collector junction width. In mesa HBTs the
collector-base junction must lie under both the emitter
stripe and under the base Ohmic contacts, which must



Fig. 5. Schematic cross-section of a transferred-substrate HBT

Fig. 6. E-beam HBT: test structure with 0.15 ¹m emitter-base
junction (a), and 0.4 ¹m Schottky collector stripe (b)

be a minimum width of one contact transfer length,
typically » 0:25 ¹m. A minimum collector-base junc-
tion width is thus de¯ned, and a lower limit is set for
HBT scaling

Using substrate transfer processes [7], HBTs can
be de¯ned with emitter-base and collector-base junc-
tions on opposing sides of the base epitaxial layer (¯g.
5). The minimum collector junction width is now de-
termined by the emitter width alone, and need not
include the widths of the base Ohmic contacts; col-
lector junctions can be scaled to submicron dimen-
sions. Submicron InAlAs/InGaAs devices fabricated
using electron-beam lithography (¯g 5) exhibit 21 dB
unilateral power gain at 100 GHz (¯g. 7). Extrapo-
lation at -20 dB/decade (to be treated with caution)
suggests an 1100 GHz fmax. In addressing limits to
collector scaling, one alternative to substrate transfer
is an undercut collector-base junction [8]. A second
alternative is very high (carbon) base doping within a
normal mesa HBT structure { at » 2 ¢ 1020=cm3 base
doping, the contact transfer length is » 0:1¹m, and
very narrow base mesas can then be employed.

The HBT of ¯g. 7 has narrow emitter and collec-
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Fig. 8. Measured RF gains for an HBT with a 300 ºA base with
52 meV grading and a 2000 ºA collector.

tor junctions but thick 400 ºA base and 3000 ºA col-
lector layers, and hence has high fmax but only 200
GHz f¿ . While such a device will provide high gains
in tuned millimeter-wave ampli¯ers, more general cir-
cuits require simultaneously high values for f¿ and
fmax. Digital circuits, in turn, have gate delays in
which (¿b + ¿c), Cbc¢Vlogic=Ic, RbbCje, RexCje and
RF bb(¿b + ¿c)Ic=¢Vlogic are all signi¯cant terms.

To ensure a 2:1 improvement in all circuits employ-
ing the HBT, all HBT transit times and RC time con-
stants must be reduced 2:1. In addition to lithographic
scaling of emitter and collector junction widths{as
demonstrated in the high-fmax devices{epitaxial layer
thicknesses, emitter contact resistance, and emitter
current density then must also be scaled by the propor-
tions given earlier. Figure 8 shows measured RF gains
for a developed in our e®orts to realize logic gates at
70-100 GHz clock rates. Simultaneous 295 GHz f¿ and
fmax are obtained.

Circuit results in the substrate transfer process
include DC-80 GHz lumped and distributed ampli-
¯ers [10], 66 GHz true static frequency dividers [11],



Fig. 9. 20 GHz-clock-rate ¢-§ ADC in the transferred-substrate
process.

W-band medium-power ampli¯ers, and 20-GHz-clock
delta-sigma analog-digital converters [12].

IV. Conclusions

With bipolar transistors, improved bandwidths are
obtained by vertical scaling (thinner base and collector
layers), combined with lateral scaling (narrower collec-
tor and emitter junctions), increased current density,
and progressive improvements in emitter Ohmic con-
tacts.
Substrate transfer processes facilitate lateral scaling;

remaining di±culties include the emitter contact resis-
tivity, loss of breakdown in thin collector layers, and
reliability and heatsinking under high-current-density
operation.
While III-V HBTs bene¯t from strong heterojunc-

tions, high mobilities, and high electron velocities,
Si/SiGe bipolar transistors have been much more ag-
gressively scaled. Aggressive submicron scaling of III-
V HBTs can result in THz device bandwidths.
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