On the Feasibility of Few-THz Bipolar Transistors

M. Rodwell, E. Lind, Z. Griffith, S. R. Bank*, A. M. Crook*, U. Singisetti, M. Wistey, G. Burek, and A. C. Gossard **University of California, Santa Barbara**

Sponsors

J. Zolper, S. Pappert, M. Rosker **DARPA (TFAST, SWIFT, FLARE)**

D. Purdy, I. Mack Office of Naval Research

Kwok Ng, Jim Hutchby Semiconductor Research Corporation

Collaborators (HBT)

M. Urteaga, R. Pierson , P. Rowell, M-J Choe, B. Brar Teledyne Scientific Company

X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc.

S. Mohney Penn State University *Now at University of Texas, Austin

rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax

Specific Acknowledgements

(Prof.) Erik Lind

125 nm HBTs process technology theory / epi design

Dr. Zach Griffith

500 & 250 nm HBTs 150 GHz Logic 100 GHz op-amps

THz Transistors are coming soon; both InP & Silicon

InP Bipolars: 250 nm generation: \rightarrow 780 GHz f_{max}, 424 GHz f_{τ}, 4-5 V BV_{CEO}

IBM IEDM '06: 65 nm SOI CMOS \rightarrow 450 GHz f_{max}, ~1 V operation

Intel Jan '07: 45 nm / high-K / metal gate

continued rapid progress

 \rightarrow continued pressure on III-V technologies

Intel Demonstra		Intel's Logic Technology Evolution					
High-k + Metal Gate Transiste							
on 45 nm Microproc		Process Name:	P1262	<u>P1264</u>	<u>P1266</u>	<u>P1268</u>	<u>P1270</u>
		Lithography:	90 nm	65 nm	45 nm	32 nm	22 nm
Mark Bohr Intel Senior Fellow Logic Technology Development	Kaizad Mistry 45 nm Program Manager Logic Technology Development	1 st Production:	2003	2005	2007	2009	2011
(Intel/Incodest	1		Jan 2007				

If you can't beat them, join them ! unclear if Si MOSFETs will work well at sub-22-nm gate length InGaAs/InAs/InP channels under serious investigation for CMOS VLSI.

Datta, DelAlamo, Sadana, ...

THz InP vs. near-THz CMOS: different opportunities

65 / 45 / 33 / 22 ... nm CMOS vast #s of very fast transistors ... having low breakdown, sloppy DC parameters what <u>NEW</u> mm-wave applications will this enable ?

massive monolithic mm-wave arrays \rightarrow 1 Gb/s over ~1 km

mm-wave MIMO

DC parameters limit analog precision...

THz InP vs. near-THz CMOS: different opportunities

InP HBT: THz bandwidths, good breakdown, analog precision

340 GHz, 70 mW amplifiers (design) In future: 700 or 1000 GHz amplifiers ?

M. Jones

200 GHz digital logic (design) In future: 450 GHz clock rate ?

30-50 GHz gain-bandwidth op-amps→ low IM3 @ 2 GHz In future: 200 GHz op-amps for low-IM3 10 GHz amplifiers?

Transistor Benchmarks

f_{max} matters

Tuned amplifiers: f_{max} sets bandwidth

 $\begin{array}{c} \textit{Mixed-signal:} \\ \textit{C}_{cb} \Delta \textit{V} / \textit{I}_{c} , \textit{C}_{je} \Delta \textit{V} / \textit{I}_{c} \\ \textit{R}_{ex}\textit{I}_{c} / \Delta \textit{V} , \textit{R}_{bb}\textit{I}_{c} / \Delta \textit{V} , \\ \tau_{f} \end{array}, \overset{\checkmark}{\underset{0} \leftarrow \underset{0} \leftarrow \underset{0$

Goal is >1 THz f_{τ} and f_{max} <50 fs C Δ V / I charging delays

BVCEO is not the only voltage limit

Need <u>Safe Operating Area</u> ...at least $BV_{ceo}/2$ at $J_{max}/2$

thermal resistance, high-current breakdown high-temperature operation (~75 C) ?

 \rightarrow emphasize InP-collector DHBTs

HBT Scaling Laws

Frequency Limits and Scaling Laws of (most) Electron Devices

 $\tau \propto$ thickness

 $C \propto \text{area} / \text{thickness}$

 $R_{top} \propto
ho_{contact}$ / area

 $R_{bottom} \propto 1 / \text{stripe lenght}$

resistance capacitance transit time device bandwidth

applies to almost all semiconductor devices:

transistors: BJTs & HBTs, MOSFETS & HEMTs, Schottky diodes, photodiodes, photo mixers, RTDs,

Applies whenever AC signals are removed though Ohmic contacts Diode lasers avoid $R/C/\tau$ limits by radiating through end facets

HBT scaling laws

Goal: double transistor bandwidth when used in any circuit

- → keep constant all resistances, voltages, currents
- → reduce 2:1 all capacitances and all transport delays

(emitter length L_E)

InP DHBTs: September 2007

popular metrics : f_{τ} or f_{max} alone $(f_{\tau} + f_{max})/2$ $\sqrt{f_{\tau}} f_{max}$ $(1/f_{\tau} + 1/f_{max})^{-1}$

much better metrics : <u>power amplifiers</u>: PAE, associated gain, mW/ μm <u>low noise amplifiers</u>: F_{min}, associated gain, <u>digital</u>: f_{clock} , hence $(C_{cb}\Delta V / I_c)$, $(R_{ex}I_c / \Delta V)$, $(R_{bb}I_c / \Delta V)$, $(\tau_b + \tau_c)$

HBT Scaling Roadmaps

multi-THz InP HBT Scaling Roadmap

emitter	512	256	128	64	32 nm width
	16	8	4	2	$1 \Omega \cdot \mu m^2$ access ρ
base	300	175	120	60	30 nm contact width,
	20	10	5	2.5	1.25 Ω·μm ² contact ρ
collecto	r 150	106	75	53	37.5 nm thick,
	4.5	9	18	36	72 mA/μm ² current density
	4.9	4	3.3	2.75	2-2.5 V, breakdown
f _τ f _{max} power amplifiers digital clock rate (static dividers)	370 490 245 150	520 850 430 240	730 1300 660 330	1000 2000 1000 480	1400 GHz 2800 GHz 1400 GHz 660 GHz

HBT Scaling Challenges

Scaling challenges: What looks easy, what looks hard?

key device parameter	required change		
collector depletion layer thickness	decrease 2:1		
base thickness	decrease 1.414:1		
emitter junction width	decrease 4:1		
collector junction width	decrease 4:1		
emitter resistance per unit emitter area	decrease 4:1		
current density	increase 4:1		
base contact resistivity (if contacts lie above collector junction)	decrease 4:1		

Hard:

Thermal resistance (particularly IC-level) Emitter contact + access resistance Base contact resistance Contact electromigration Yield in deep submicron processes

high current density, low resistivity contacts, epitaxial & lithographic scaling THz semiconductor devices

Thermal Resistance Scaling : Transistor, Substrate, Package

master-slave D-Flip-Flop clock frequency, GHz

Breakdown Voltage Scaling: Expect 2.4 V @ 1 THz f_{τ}

For mature, well-scaled InP DHBTs, $f_{\tau} x BVCEO = 2.4 THz-Volts$.

HBTs:

500 nm Generation

512 nm InP DHBT

Laboratory Technology

500 nm mesa HBT

150 GHz M/S latches

175 GHz amplifiers

Production

(Teledyne)

Z. Griffith M. Urteaga	
P. Rowell	
D. Pierson B. Brar	
V. Paidi	

500 nm sidewall HBT

DDS IC: 4500 HBTs

Teledyne / BAE

20 GHz clock

38 GHz op-amps

Teledyne / UCSB

46 dBm OIP3 @ 2 GHz with 1 W dissipation

Teledyne

 $f_{\tau} = 405 \text{ GHz}$ $f_{max} = 392 \; GHz$ $V_{br, ceo} = 4 V$

HBTs:

250 nm Generation

125 nm InP HBT development

125 nm Technology Development

New Emitter Process

Scalable below 128 nm width

First results

are at 250 nm emitter width

Simultaneously 560 GHz $f_t \& f_{max}$ BVceo = 3.3V ...can do much better...

E. Lind

128 nm InP HBT: Technology Development

240

<u>New Emitter Process for 128 and 64 nm junctions</u> dry etched metal dry etched junction refractory W or Mo contact \rightarrow stable at very high J_e < 0.8 Ω - μ m² contact resistivity

<u>New, thin --12 nm -- base-collector grade:</u> most of collector is high- E_g InP \rightarrow does not degrade V_{brceo} grade sufficiently thin even for 64 nm HBTs

alternative epi layer designs (InP/GaAsSb/InP) are not necessary

<u>first results: close but not perfect</u> slip-ups: wide 250 nm emitters, poor base contacts only a 560GHz / 560GHz / 3 V device target was 700 / 700 / 3 ... try again soon...

Improvements in Emitter Access Resistance

125 *nm* generation requires 5 Ω - μ m² emitter resistivities

65 nm generation requires 1-2 Ω - μ m²

Recent Results (ONR contacts program)					
ErAs/Mb	MBE in-situ	1.5 Ω - μm²			
Mb	MBE in-situ	0.6 Ω - μm²			
TiPdAu	ex-situ	0.5 Ω - μm²			
TiW	ex-situ	0.7 Ω - μm²			

Degeneracy contributes 1 Ω - μm^2

20 nm emitter-base depletion layer contributes 1 Ω - μ m² resistance

Current UCSB TiW emitter process

- 5 nm Ti layer for improved adhesion
- \bullet 25 nm SiN_x sidewalls protects Ti/TiW during Cl_2 and BHF etch, improves adhesion
- Standard triple mesa
- BCB passivation

Emitter prior to InP wet etch

E. Lind

Emitter width ~ 250 nm First reported device with f_t , $f_{max} > 500 \text{ GHz}$ $BV_{CEO} \sim 3.3 \text{ V}$, $BV_{CBO} = 3.9 \text{ V}$ ($J_{e,c} = 15 \text{ kA/cm}^2$) Emitter contact (from RF extraction), $R_{cont} < 5 \Omega \cdot \mu m^2$ Base: $R_{sheet} = 780 \Omega/sq$, $R_{cont} \sim 15 \Omega \cdot \mu m^2$ Collector: $R_{sheet} = 11.1 \Omega/sq$, $R_{cont} \sim 10.1 \Omega \cdot \mu m^2$

E. Lind

64 nm & 32 nm (THz) InP HBT

64 & 32 nm Generations: Example Process Flow

One critical lithographic step, no critical alignments

Refractory base and emitter contacts

Base-emitter ledge for leakage current control

Reliability...

...depends upon stress and upon device structure.

high current density \rightarrow heating thermal design is critical

high current density→ contact electromigration need refractory (W, TiW, Mo,...) contacts

must investigate failure mechanisms driven by high current density in semiconductor dark-line defects

Given the need for large I/C charging rates, high current density is unavoidable.

multi-TH	z InP	HBT S	Scalin	ig Roa	Idmap
emitter	512 16	256 8	128 4	64 2	32 nm width 1 Ω -µm ² access ρ
base	300 20	175 10	120 5	60 2.5	30 nm width, 1.25 Ω ·µm ² contact ρ
collecto	r 150 4.5	106 9	75 18	53 36	37.5 nm thick, 72 mA/um ² current density
f	4.9 370	4 520	3.3 730	2.75	2-2.5 V, breakdown
f _{max} power amplifiers	490 245	850 430	1300 660	2000	2800 GHz 1400 GHz
(static dividers)	150	240	330	400	

Interconnects: Substrate Microstrip Has Problems

Line spacings must be ~3*(substrate thickness)

all factors require very thin substrates for >100 GHz ICs \rightarrow lapping to ~50 μ m substrate thickness typical for 100+ GHz

Interconnect: Coplanar Waveguide Has Many Problems!

40 Gb/s differential TWA modulator driver note CPW lines, fragmented ground plane

35 GHz master-slave latch in CPW note fragmented ground plane

175 GHz tuned amplifier in CPW note fragmented ground plane

THz IC Interconnects will be Silicon-Like

Microstrip wiring; metal 4 ground plane

P-doped substrate, junction isolation \rightarrow kill substrate modes, negligible substrate capacitance Through-wafer thermal vias (etch stop) \rightarrow address device & IC thermal scaling Through-wafer electrical vias (no etch stop) \rightarrow low-ground-bounce IC-package connection

Comparison to SiGe

SiGe Today : Parasitic Reduction for Increased Bandwidth

Parasitic Reduction Could Help Less with Small Devices

Scaling for increased HBT bandwidth:

Lateral dimensions vary as ~(bandwidth)⁻¹, vertical as ~(bandwidth)⁻².

→ Proportionally larger parasitic capacitances from extrinsic contact regions.

Let us compare intrinsic device structures...

InP vs. SiGe: Comparison with Intrinsic Device

Assumption: Mesa structure, change from SiGe to InP, keep the same bandwidth

$$\tau_{c} = T_{c}/2v \quad \frac{C_{cb}}{I_{c}} \sim \frac{A_{c}}{A_{e}} \frac{\tau_{c}/2}{(V_{cb,app} + \phi)} \quad v \text{ increased } 3.5:1 \rightarrow \text{increase collector thickness } 3.5:1$$

breakdown increased in proportion to $(E_{max}v)$

$$J_{Kirk} = \frac{2\varepsilon v (V_{cb,applied} + V_{cb,depletion} + 2\phi)}{T_c^2} \quad J \text{ decreases } 3.5:1 \rightarrow \text{ junction areas increase } 3.5:1$$

$$\Delta T \cong \frac{P}{\pi K_{Th} L_E} \ln \left(\frac{L_e}{W_e}\right) + \frac{P}{\pi K_{Th} L_E}$$

For equal ΔT , L_e remains constant, W_e increases 3.5 : 1 (K_{th} is higher in Si, but Si needs SiO₂ trenches) Required lithographic feature size is ~ 3.5 : 1 larger

$$\begin{split} R_{ex} &= \rho_c / A_e \\ R_{bb} \cong \frac{\rho_s W_e}{12L_e} + \frac{\rho_s W_{bc}}{6L_e} + \frac{\rho_c}{A_{contacts}} \end{split}$$

Required contact resistivities are similarly relaxed

 \rightarrow about 3.5:1 larger dimensions, 3.5:1 larger breakdown for a given device bandwidth

 \rightarrow higher bandwidths achieved due to high velocities and low resistance contacts

On the Feasibility of Few-THz Bipolar Transistors

InP Bipolar Transistors

Scaling limits: contact resistivities, device and IC thermal resistances.
 62 nm (1 THz f_τ, 1.5 THz f_{max}) scaling generation is feasible.
 700 GHz amplifiers, 450 GHz digital logic
 Is the 32 nm (1 THz amplifiers) generation feasible ?

SiGe Bipolar Transistors

Sophisticated device structure \rightarrow harder to project further progress

Contact + access resistivies & thermal resistivities are key scaling limits

non-animated versions of the three key scaling slides

HBT scaling laws

Goal: double transistor bandwidth when used in **any** circuit \rightarrow keep constant all resistances, voltages, currents \rightarrow reduce 2:1 all capacitances and all transport delays $\tau_b = T_b^2 / 2D_n + T_b / v \rightarrow$ thin base ~1.414:1 $\tau_c = T_c / 2v \rightarrow$ thin collector 2:1

 $C_{cb} \propto A_c/T_c \rightarrow$ reduce junction areas 4:1 $R_{ex} = \rho_c/A_e \rightarrow$ reduce emitter contact resistivity 4:1 $I_{c,Kirk} \propto A_e/T_c^2$ (current remains constant, as desired)


```
(emitter length L_E)
```

$$\Delta T \cong \frac{P}{\pi K_{InP}L_E} \ln \left(\frac{L_e}{W_e}\right) + \frac{P}{\pi K_{InP}L_E} \frac{\text{need to reduce junction areas 4:1}}{\text{reduce widths 2:1 & reduce length 2:1 } \rightarrow \text{doubles } \Delta T \times \frac{P}{reducing widths 4:1, keep constant length} \rightarrow \text{small } \Delta T \text{ increase } \checkmark$$

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

First-Order HBT Design

$$\tau_{b} = T_{b}^{2} / 2D_{n} + T_{b} / v$$

$$\tau_{c} = T_{c} / 2v$$

$$R_{ex} = \rho_{c} / A_{e}$$

$$R_{bb} \cong \frac{\rho_s W_e}{12L_e} + \frac{\rho_s W_{bc}}{6L_e} + \frac{\rho_c}{A_{contacts}}$$

(emitter length
$$L_E$$
)

$$C_{cb} = \mathcal{E}A_c / T_c$$

$$\begin{split} I_{c,Kirk} &= 2\varepsilon v_{eff} L_E (W_E + 2T_c) (V_{cb} + V_{cb,depletion} + 2\phi) / T_c^2 \\ C_{cb} / I_c &= \left(A_c / A_e \right) \cdot \tau_c \cdot \left(V_{cb,app} + V_{cb,depl} + 2\phi \right)^{-1} \end{split}$$

$$\Delta T \cong \frac{P}{\pi K_{InP}L_E} \ln\left(\frac{L_e}{W_e}\right) + \frac{P}{\pi K_{InP}L_E}$$