Indium Phosphide and Related Materials Conference 2007

Sub-300nm InGaAs/InP Type-I DHBTs with a 150nm collector, 30nm base demonstrating 755GHz f_{max} and 416GHz f_{τ}

Zach Griffith, Erik Lind, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara, CA, 93106-9560, USA

Xiao-Ming Fang, Dmitri Loubychev, Ying Wu, Joel M. Fastenau, and Amy Liu IQE Inc. 119 Bethlehem, PA 18015, USA

griffith@ece.ucsb.edu, 805-453-8011, 805-893-3262 fax

Standard figures of merit / Effects of Scaling

Small signal current gain cut-off frequency (from H_{21})

$$\frac{1}{2\pi f_{\tau}} = \tau_{b} + \tau_{c} + \frac{nk_{B}T}{qI_{c}} \left(C_{je} + C_{cb}\right) + \left(R_{ex} + R_{c}\right)C_{cb}$$

Thinning epitaxial layers (*vertical scaling*) reduces base and collector transit times... But increases capacitances

Power gain cut-off frequency (from U)

$$f_{\max} \cong \sqrt{\frac{f_{\tau}}{8\pi R_{bb,eff}}C_{cb,eff}}}$$

Reduce R_{bb} and $C_{cb,}$ through *lateral* scaling

Charging time for digital logic

$$\tau \propto \frac{C_{cb}}{I_c} \Delta V$$

2006: 250 nm Scaling Generation, 1.414:1 faster

emitter	500 16	250 nm width 9 $\Omega \cdot \mu m^2$ access ρ	
base	300 20	150 width, 10 $\Omega \cdot \mu m^2$ contact ρ	
collector	150 5 5	100 nm thick, 10 mA/μm ² current der 3.5 V, breakdown	isity 🗸
f _τ f _{max} power amplifiers digital clock rate (static dividers)	400 500 250 160	500 GHz (416 GHz) 700 GHz (755 GHz) 350 GHz 230 GHz	r fabrication in progress

Temperature Rise: Transistor, Substrate, Package

master-slave D-Flip-Flop clock frequency, GHz

250 nm scaling generation DHBTs

UCSB -- 250nm InP DHBT

10.0 kV 3.0 9300x

TLD 4.0

- All features realized by I-line lithography
- Emitter contact resistance $\rho_{c, ex}$ is ~ 5 $\Omega \cdot \mu m^2$
- Base ρ_c is < 2 $\Omega \cdot \mu m^2$ as deposited...
 - Increases to ~ 6-7 Ω · μ m² after 60 min, 250°C BCB
- Recall, 1/8 μ m scaling generation needs $\leq 5 \Omega \cdot \mu$ m² emitter ρ_c

Test-fixture surrounding the DUT

Details behind 2-port device measurement:

- 1. Shielded probes
 - Cascade Infinity in this case
- 2. Microwave absorber under DUT
 - -- The substrate is ~ $635 \mu m$ thick
 - -- First parasitic mode excited ~ 26 GHz
- 3. Signal feed line is $75\mu m$ per side
- 4. Probe-pad is circular, Radius = $15\mu m$
- 5. Structure resides on ~ 1.8µm BCB (ϵ_r = 2.7), on thick InP substrate (ϵ_r ~13)

OK for manual probing, not automated

Layer structure -- 60 nm collector DHBT

Objective:

- Thin collector and base for decreased
 electron transit time
- High f_{τ} device with moderate f_{max}
- Investigate J_{max} before current blocking in the base-collector grade
- What is the HBT breakdown at this collector scaling node?

Thickness (nm)	Material	Doping cm ⁻³	Description	
10	In _{0.85} Ga _{0.15} As	5∙10 ¹⁹ : Si	Emitter cap	
15	In _x Ga _{1-x} As	> 4∙10 ¹⁹ : Si	Emitter cap grading	
10	In _{0.53} Ga _{0.47} As	4·10 ¹⁹ : Si	Emitter	
85	InP	3∙10 ¹⁹ : Si	Emitter	
10	InP	1.2·10 ¹⁸ : Si	Emitter	
30	InP	1.0⋅10 ¹⁸ : Si	Emitter	
14	InGaAs	10-7·10 ¹⁹ : C	Base	
7.5	In _{0.53} Ga _{0.47} As	7.5∙10 ¹⁶ : Si	Setback	
18	InGaAs / InAlAs	7.5∙10 ¹⁶ : Si	B-C Grade	
3	InP	3.75 ⋅10 ¹⁸ : Si	Pulse doping	
31.5	InP	7.5⋅10 ¹⁶ : Si	Collector	
7.5	InP	1⋅10 ¹⁹ : Si	Sub Collector	
7.5	In _{0.53} Ga _{0.47} As	2·10 ¹⁹ : Si	Sub Collector	
300	InP	2·10 ¹⁹ : Si	Sub Collector	
Substrate	SI : InP			

DC data – 60 nm collector, 14 nm base InP Type-I DHBT

Fast transistors – late 2006

Band diagram – UCSB 150 nm collector DHBT revised

Thickness (nm)	Material	Doping cm ⁻³	Description
30	InGaAs	7-4·10 ¹⁹ : C	Base
15	In _{0.53} Ga _{0.47} As	3.5∙10 ¹⁶ : Si	Setback
24	InGaAs / InAlAs	3.5⋅10 ¹⁶ : Si	B-C Grade
3	InP	3.5 ⋅10 ¹⁸ : Si	Pulse doping
108	InP	3.5⋅10 ¹⁶ : Si	Collector
5	InP	1·10 ¹⁹ : Si	Sub Collector
6.5	In _{0.53} Ga _{0.47} As	2⋅10 ¹⁹ : Si	Sub Collector
300	InP	2·10 ¹⁹ : Si	Sub Collector
Substrate	SI : InP		

$V_{be} = 0.95V, V_{cb} = 0.6V, J_{e} = 0, 10 \text{ mA}/\mu\text{m}^{2}$

DC data – 150nm collector, 30nm base InP Type-I DHBT

 $BV_{CEO} = 5.64 \text{ V}, BV_{CBO} = 6.65 \text{ V} (J_{e,c} = 10 \text{ kA/cm}^2)$ Emitter contact (from RF extraction), $R_{cont} \sim 5.1 \Omega \cdot \mu m^2$ Base: $R_{sheet} = 603 \Omega/sq$, $R_{cont} \sim 6.29 \Omega \cdot \mu m^2$ Collector: $R_{sheet} = 12.2 \Omega/sq$, $R_{cont} \sim 6.37 \Omega \cdot \mu m^2$

Measured microwave data – 755 GHz f_{max}

Surprise finding...higher f_{max} HBT bias found

- Record f_{max} for a transistor
- Record bandwidth for any device...at room temperature
 - Previous high is f_{τ} = 755GHz from UIUC InP SHBTs \rightarrow f_{τ} = 845GHz when cooled to -55°C
- Record high $f_{\tau} \times BV_{ceo} = 2391 \text{ GHz} \cdot V exceeding previous Type-II InP DHBT$
 - Similar values have been demonstrated by UCSB InP Type-I DHBT at 120nm collector node

Reasonableness of f_{max} determination at 780GHz

Common emitter and base breakdown of UCSB InP Type-I DHBTs

Collector thicknesses, T

and is much higher than InP SHBTs at any scaling generation at same $J_{e'}$ J_{c}

2007: 125 nm Scaling Generation \rightarrow almost-THz HBT

emitter	500 16	250 9	125 nm width 4 $\Omega \cdot \mu m^2$ access ρ	\checkmark
base	300 20	150 10	75 width, 5 $\Omega \cdot \mu m^2$ contact ρ	
collector	тБО Б	100 10 3.5	 75 nm thick, 20 mA/μm² current density 3 V, breakdown 	
f _τ f _{max} power amplifiers digital clock rate (static dividers)	400 500 250 160	500 700 350 230	700 GHz 1000 GHz 500 GHz 330 GHz	T5 m T5 m InGaAs/InP T19 m T9 m

InP HBTs today

Conclusion

- 250nm InP DHBTs have demonstrate record bandwidth of 780GHz
- Type-I InP DHBTs are scalable down to 60nm collectors w/ 2× higher breakdown voltages – with usable high-voltage, high current operation
- Record $f_{\tau} \times BVceo = 2390GHz \cdot V$ demonstrated for same collector thickness as Type-II GaAsSb InP DHBTs
- With little time to spare, UCSB aggressively pursuing 125nm devices and is close...
 - All potential device physic limitations satisfied...just need to make it

This work was supported DARPA under the TFAST program N66001-02-C-8080, DARPA SWIFT program, and by the ONR N0001-40-4-10071