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InP-based high electron mobility transistors (HEMTs) are attractive devices for high-speed, low-noise, low power
amplifier applications. These devices have performance advantages due to their higher low-field electron mobility, their
higher peak electron velocity, and their higher sheet carrier density. Indeed, high performance InP-HEMTs with a cutoff
frequencies (f

T
)  of over 550 GHz have been demonstrated [1,2]. These performances were achieved only in depletion-

mode (D-mode) HEMTs. An enhancement-mode (E-mode) HEMT is strongly required  since it eliminates the need of
negative voltage supply, and it simplifies circuit configuration by integrating with D-mode HEMTs. However, E-mode
HEMTs with a comparable high-speed performance to D-mode HEMTs have not been reported. This is partly because
of a higher sheet resistance of uncapped recessed region designed for E-mode operation, which results in a high access
resistance that degrades extrinsic transconductance (g

m
). Moreover, HEMTs with a sub-50-nm gate length experience a

severe short-channel effect which further pushes the threshold voltage (V
th
) to the negative direction, making it difficult

to operate in E-mode. In this paper, we report on 30-nm E-mode InP-HEMTs with an extremely high g
m
 of over 2.2 S/mm

and an ft of over 550 GHz using a Pt/Mo/Ti/Pt/Au buried gate technology.
Figure 1 illustrates a cross-section of a fabricated InP-HEMT. The HEMT epitaxial structure consists of an InAlAs

buffer, pseudomorphic In
0.7
Ga

0.3
As channel, an InAlAs spacer layer, Si planar doping, an InAlAs barrier, an InP etch-

stopper, and n++-InGaAs/InAlAs cap layers. A 30-nm T-gate was formed by a conventional lift-off technique using a tri-
layer electron beam lithography. Pt(3 nm or 9 nm)/Mo/Ti/Pt/Au gate metal was used for E-mode HEMTs while a
conventional Ti/Pt/Au gate was used for D-mode HEMTs. Pt was used to form a buried gate by annealing and Mo was
used as a diffusion barrier. Figure 2 shows V

th
 of 30-nm E-mode InP-HEMTs before and after annealing at 210°C and

250°C for 1 hour. It is notable that there is a significant difference in V
th
 shift  between 3 and 9-nm samples, and V

th
 of 3-

nm sample saturates at 250°C. This result indicates Mo acts as an effective diffusion barrier of Pt and diffusion depth can
be controlled by the thickness of Pt.

Figure 3 shows output characteristics of a 30-nm E-mode HEMT with a 9-nm Pt gate and a 30-nm D-mode HEMT with
a Ti gate fabricated on the same wafer. Both devices were annealed at 250°C for 1 hour. The devices show good pinch-
off characteristics and very low on resistances (R

on
) of 0.38 ohm·mm (E-mode) and 0.36 ohm·mm (D-mode). Figure 4

shows transfer charactersitics of the E-mode HEMT. A V
th
 of +0.18 V at a  drain-source voltage (V

ds
) of 0.6 V and a peak

g
m
 of 2.22 S/mm were obtained. This g

m
 value is higher than that (1.44 S/mm) of the D-mode HEMT by 54% and is the

highest value ever reported for any field effect transistors (FETs). Good Schottky characteristics were maintained even
after 250°C annealing for 1 hour. Figure 5 plots RF gain of the 30-nm E-mode HEMT biased at a V

ds
 of 0.6 V and a gate-

source voltage (V
gs
) of 0.4 V, exhibiting an extremely high f

T
 of 550 GHz and an f

max
 of 346 GHz. This  f

T
 is the highest value

ever reported for any E-mode InP-HEMTs and even comparable to the fastest D-mode HEMTs [1]. f
T
 and  f

max
 values

measured at various bias conditions are also plotted in Fig. 6. It should be noted that  f
T
 exceeds 200 GHz only at a V

ds
 as

low as 0.1 V, and 350 GHz at 0.2 V, which is suitable for very low-power applications. These results demonstrate the
potential of the Pt/Mo/Ti/Pt/Au buried gate technology to enable further lateral and vertical scaling of InP-HEMTs.
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Fig. 4. Transfer characteristics of 30-nm E-mode HEMT.

Fig. 1. Schematic illustration of InP-HEMT with a Pt/Mo/Ti/
Pt/Au buried gate. Fig. 2. Threshold voltage of 30-nm InP-HEMTs with Pt/Mo/

Ti/Pt/Au gate before/after annealing.

Fig. 3. Output characteristics of 30-nm E/D-mode HEMTs.

Fig. 5. RF gain for 30-nm E-mode HEMT.

Fig. 6. ft and fmax at various bias conditions of 30-nm E-mode
HEMT.
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