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Abstract—Time-interleaved analog-to-digital converters 
(TIADC) require mismatch calibration to achieve high 
signal-to-noise ratios. In this paper, we present a new blind 
technique for M=2 TIADC’s with following properties: (1) 
correction of general mismatches as well as static gain and 
timing error, (2) unique multi-parameter identification 
under realistic assumptions, and (3) analytic error measure 
and gradient. The proposed method overcomes the 
limitation of traditional gain-timing mismatch model. Time-
frequency transformation is eliminated by analytic 
approach, enhancing efficiency. 

I. INTRODUCTION 
A time-interleaved analog-to-digital converter 

(TIADC) achieves high sampling rates by a concurrent 
operation of parallel sub-converters. It is well known that, 
however, the spectral performance of a TIADC is 
seriously degraded by sub-converter mismatches. Such 
mismatches create noise sidebands by modulating the 
input, and eventually limit the output signal-to-noise ratio 
(SNR) and spur-free dynamic range (SFDR). Mismatches 
can be digitally corrected by either training [4] or blind 
methods [1]-[3], [5]-[8].  

Training methods are suitable for high-resolution 
applications since they are capable of correcting general 
linear mismatches, but at the cost of system suspension 
during each calibration. Blind methods, on the other hand, 
use normal input signals for calibration purpose, and 
therefore do not require dedicated calibration period. They 
can also track slowly time-varying errors. There are 
however several important considerations and limitations 
for blind methods, which are briefly reviewed below. 

Unique parameter identification: Unlike training 
methods, a priori known calibration signal is not available 
for blind correction methods. The only observation is the 
digital output, and this is in general not sufficient to 
uniquely determine mismatch parameters. We must 
therefore impose a certain constraint on the input signal to 
enable unique identification. The authors proposed a series 
of blind methods under wide-sense stationary (WSS) input 

assumption [5]-[8]. Proof of uniqueness was also given in 
various problem settings. See e.g. [5] and [6] for the first 
uniqueness proof of static gain and timing error and 
experimental results for an M=2 TIADC, respectively.  

Generalized mismatch modeling: Presently known 
blind methods can only handle static gain and timing error. 
This static gain-timing model may be adequate for low-to-
medium resolution converters. For high-resolution 
converters, however, more realistic and comprehensive 
modeling of channel mismatch is required. This 
generalized modeling approach was first applied to 
training methods to yield ~25dB of SFDR improvement 
[4]. Generalized error modeling, however, poses a 
fundamental problem to blind techniques: How to uniquely 
identify multiple parameters? Recently, it was discovered 
that WSS-based blind method can uniquely determine gain 
and phase mismatches (assumed small) in a polynomial 
form [8], yielding significant SNR gain. Sufficient 
conditions for such identification are also provided.  

Demanding computational cost: Blind methods 
typically require a very high computational cost. Iterative 
parameter search (closed-form solution generally 
unavailable) needs accurate gradient information, which 
involves intensive calculation. Signal reconstruction, given 
error estimate, is also computationally expensive. This is 
partly due to the transformation between time- and 
frequency-domain, and partly due to the long impulse 
response in the presence of sampling time error (recall 
sinc(n) decays as ~1/n). In [7], a mixed-domain approach 
was proposed to significantly reduce computational 
requirement, but this only applies to timing error.  

In this paper, we propose an analytic approach to 
WSS-based, generalized blind correction. This is on the 
same framework as in [8], but here we actively exploit the 
polynomial representation of mismatch errors to get an 
analytic form of error measure and gradient with no time-
frequency transformation, enabling more efficient 
parameter search and real-time adaptation. Theoretical 
properties in [8] however equally apply. We assume the 
input is WSS for convenience, but the proposed algorithm 
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also accepts most practical signals not WSS in a stochastic 
sense. This is because we rely on time-averaging (rather 
than stochastic expectation) to get the empirical 
autocorrelation. Therefore, non-stationary part of the input 
will be effectively smoothed out, unless the input signal 
has exact phase relationships with the sampling clock (e.g. 
sin(π(m/M)fst), m=1,…,M-1 where M is the number of 
TIADC channels). 

II. SYSTEM MODEL 
A two-channel TIADC system is shown in Fig.1 (a). 

The sample period and frequency of the array is Ts and 
ωs=2π/Ts, respectively. The analog input x(t) is 
bandlimited from dc to 0.5ωs, and assumed to be a real-
valued, zero-mean and WSS random process. Fig.1 (b) 
illustrates a linear model with channel transfer function 
(CTF) H0(ω) and H1(ω). Any linear filtering effects before 
A/D conversion are lumped into the CTF, including static 
gain, sampling time shift, pole-zero effect, etc. Assuming 
the bit-resolution is high, quantization effects are ignored. 
Normalization with respect to the first channel yields Fig.1 
(c), where the correction digital filters F0(ejω) and F1(ejω) 
are also shown. This normalization is justified because we 
are interested only in channel mismatches, disregarding 

common linear time-invariant (LTI) filtering. Now, the 
normalized CTF H(ω)≡H1(ω)/H0(ω) fully characterizes 
the general linear mismatches between the two channels. 

The system in Fig.1 (c) can be regarded as an M=2 
filter bank, with analysis and synthesis filter bank equal to 
the analog and digital filters, respectively. The alias 
component (AC) matrix for each bank is defined by [9] 
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Note that HAC and FAC is a function of p0 and p̃, actual 
mismatch parameter vector and its estimate, respectively. 
The perfect reconstruction condition is [9] 

 IFH T
ACAC 2= , (3) 

which means that the entire system in Fig.1 (c) reduces to 
an LTI system with no mismatch error. Equation (3) 
suggests that the correction filter should be designed as 

 ( ) ( )pHpF T
ACAC

~,~2~, ωω −=je , (4) 

where H̃AC is the AC matrix of a hypothetical analysis 
filter bank (assumed to be invertible), 
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where H̃(ω) is the CTF estimate, which is a function of the 
mismatch estimate p̃. From (4) and (5), FAC is given by 
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The common filtering factor 2/(H̃(ω)+H̃(ω-ωs/2)) can be 
again ignored on the same ground as CTF normalization. 
Comparing (2) and (6), it follows that the correction filter 
is a function of CTF estimate as follows. 
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Let h(t) and f[n] be the impulse response of H̃(ω) and 
F0(ejω), respectively. Then, f[n] can be obtained from (7) 
as a function of h[n]≡ h(nTs), yielding 

 [ ] ( ) [ ]nhnf n ~1−= . (8) 

The final TIADC system with error correction is shown in 
Fig.1 (d), where (7) is used. h[n] (≡h(nTs)) is a function of 
p0, and h[n] and f[n] a function of p̃, respectively.  

So far, we have not assumed any specific 
parameterization of H(ω,p) and H(ω,p̃) (and h[n,p] and 
h[n,p̃] thereof). The proposed system configuration in 
Fig.1 (d) and the derivation of correction filter in (8) is 
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Figure 1. M=2 TIADC system model: (a) physical system, (b) filter-bank 
equivalent system and (c) normalized system with correction filter bank. 
(d) final system configuration with error correction. y[n] and z[n] is the 
uncorrected and corrected output, respectively. 
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completely general and capable of generalized mismatch 
correction. The traditional gain-timing model can be 
handled as a special case. One important question remains: 
how to model or parameterize CTF. 

III. POLYNOMIAL MISMATCH MODELING 
Channel mismatch modeling is application-specific; 

different analog front-ends will exhibit different mismatch 
behaviors in general. The best mismatch modeling will be 
physics-based, such that a small number of parameters 
provide a good global fit to actual mismatch responses.  

Among many possible parameterizations, polynomial 
approximation in polar coordinate has desirable properties 
in particular. First, under WSS input and small mismatch 
assumption, it guarantees unique parameter identification 
if the TIADC input has at least (Q+1) distinct spectral 
tones at ωn’s, such that only one of Sx(ωn) or Sx(ωn-ωs/2) is 
nonzero [8] (Sx(ωn) is the input spectral density, and Q is 
the order of polynomial to be explained). The stated 
condition is sufficient, but in reality unique identification 
is practically guaranteed if the input spectrum is 
sufficiently rich. Second, polynomial modeling can closely 
approximate arbitrary linear transfer functions if they are 
smooth and continuous within the band of interest. Last, 
the traditional static gain and timing mismatch are readily 
handled. 

We begin with magnitude-phase CTF decomposition, 

 ( ) ( )( ) ( )ωφωω jegH += 1 , (9) 

where g(ω) and φ(ω) is general gain and phase mismatch, 
respectively. Under small-mismatch assumption, we have 

 ( ) ( ) ( )ωφωω jgH ++≈ 1 . (10) 

Representing g(ω) and φ(ω) as a Q-th order polynomial, 
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Then, h[n] can be analytically obtained by plugging (11) 
into (10) and taking inverse Fourier transform of (10). For 
Q=2, it can be shown to be 
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where base sequences hk[n]’s are given as 
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Equation (12)-(13) define Q=2 parameterization of h[n,p] 
and h[n,p̃], where p=(a0 a1 a2 b0 b1 b2)T and p̃=(a0 a1 a2 b0 
b1 b2)T. Extension to Q>2 is straightforward.  

Given the mismatch estimate p̃, the correction filter 
taps f[n]’s can be analytically obtained from (8) and (12)-
(13). This is simpler and significantly more efficient than 
previous blind methods where excursion to frequency-
domain is necessary to calculate reconstruction filters. 

IV. ALGORITHM DESCRIPTION 
The proposed blind correction method is based on the 

assumption that the TIADC input is WSS [5]-[8]. If 
channel mismatches are present, the TIADC output is not 
WSS in general. The blind algorithm adjusts mismatch 
estimates to restore WSS property at the TIADC output.  

Let Ry[n,m]≡E[y[n]y[m]] and Rz[n,m]≡E[z[n]z[m]] be 
the autocorrelation of uncorrected and corrected TIADC 
output, respectively (see Fig.1 (d)). It can be shown that 
Ry,z is periodic with respect to a common shift, due to the 
periodic channel switching, satisfying 

 [ ] [ ] mnmnRmnR zyzy  , allfor    2,2, ,, ++= . (14) 

If channel mismatch is present, Ry is generally (but not 
necessarily) shift-dependent, 

 [ ] [ ] mnmnRmnR zyzy  , allfor    1,1, ,, ++≠ . (15) 

It follows from (14) and (15) that Rz[n,m] is completely 
specified by Rz[u,0] and Rz[u+1,1], which can be written in 
terms of f[n] and Ry as follows. 
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In (17), (2L+1) is the number of f[n] taps. Ie[n]=1 if n is 
even, 0 if not. Similarly, Io[n]=1 for odd n, and 0 
otherwise. Now, input-output WSS can be achieved by 
minimizing the following error measure, 
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where Umax is the maximum time lag to consider. If (18) is 
identically zero, Rz is shift-independent, implying WSS 
output. The gradient of J can also be analytically found, 
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where autocorrelation derivatives turn out to be 
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pm is m-th mismatch parameter in p̃. The minimization of J 
in (18) can be performed by the following iteration rule, 
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where pmi is i-th estimate of pm. α is a convergence 
parameter (α<<1). Note that the calculation of gradient by 
(16)-(17) and (20)-(21) does not involve numerically 
intensive operations such as matrix inversion or 
transformation between time- and frequency-domain. The 
required calculation is mostly double-convolution, 
therefore further reduction in complexity would be 
possible using fast Fourier-transform operation.  

V. SIMULATION RESULTS 
MATLAB simulation results are presented in this 

section to demonstrate the proposed method. The M=2 
TIADC array under simulation has 12-bit resolution with 
0.4% static gain and 0.6% sampling time mismatch. Each 
channel has a single pole around 0.6ωs, and the mismatch 
in pole location is 2%. The magnitude and phase of CTF 
are modeled as a Q=2 polynomial. The input signal has 
three tones with equal magnitudes at 0.065ωs, 0.185ωs and 
0.405ωs. This particular signal enables unique polynomial 
identification up to Q=2 [8]. Total 500 iterations are 
performed according to the descent rule (22). For each 
iteration, Ry is obtained by time-averaging 100,000 
uncorrected output samples. L=20 and Umax=5. Fig.2 (a) 
and (b) shows a convergence plot for parameter estimate 
pm and error measure J, respectively. Fig.2 (c) and (d) 
compares the true and estimated CTF. A close agreement 
is seen, which obviously the simple gain-timing model 
cannot provide. Finally, mismatch-limited SNR is 
estimated by 1/|H̃(ω)-H(ω)|, and shows 15~30dB 
improvement after calibration in Fig.2 (e). 
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Figure 2.  Simulation results: (a) mismatch parameter and (b) error 
measure history across 500 iterations. (c) magnitude and (d) phase 
response of true (dotted lines) and final estimate (solid lines) CTF. (e) 
comparison of mismatch-limited SNR before and after 500 iterations. 

112


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

