IEEE CSIC Short Course, RF and High Speed CMOS, Nov. 12, 2006, San Antonio, Texas

mm-Wave IC Design: The Transition from III-V to CMOS Circuit Techniques

Patrick Yue, Mark Rodwell, UCSB

Outline

- Background
 - Emerging mm-wave applications
 - Open design issues for mm-Wave CMOS
- CMOS for mm-wave design
 - Optimizing CMOS device performance layout & bias
 - On-chip inductors in CMOS
 - Cell-based device modeling and design methodology
 - State of the art CMOS mm-Wave design examples
- mm-Wave design techniques
 - Device characterization issues
 - Unconditionally stable, gain-matched amplifier design procedure
 - Tuned amplifier, power amplifier design examples
 - On-chip transmission line design
- Summary
- References

Emerging mm-Wave Wireless Applications

٠

•

•

•

Recent Evolution for CMOS RF

(D. Su, et al. ISSCC 2002.)

- **0.25-μm CMOS**
- 5-GHz RF transceiver

(S. Mehta, et al. ISSCC 2005.)

- 0.18-µm CMOS
- RF + baseband DSP

But difficult to migrate below 0.18µm even for RF SoC...

Lower power,

cost and size

State of the Art mm-Wave IC: 330 GHz 16-Finger Power Amp

designs in progress: Michael Jones

device: 5 V, 650 GHz f_{max} InP DHBT wiring: thin film microstrip with 2 um BCB

Challenges:

line losses are very high

lines > 60 Ω are not feasible \rightarrow increases Q of output tuning

lines of required impedance are narrow \rightarrow limits on DC current

small unmodeled parasitics will de-tune designmust maintain microstrip environment to device vias with negligible lengths of unmodeled random interconnects

Open Design Issues

- RF CMOS design are by and large lumped circuits
- mm-Wave design are traditionally distributed circuits
- How will mm-Wave CMOS be designed?
 - Assuming that we will integrate an entire transceiver, should each block be impedance-matched?
 - Do we need new design flow / methodology?
 - Should all interconnect be modeled as T-line and be impedance-controlled?
 - Do we need a well-controlled global ground (plane)?
- How to optimize CMOS device performance?

CMOS Device Parameter Scaling Trend

Process	0.25 μ m ('98)	0.18 μm (՝00)	0.13 μ m ('02)	90 nm (`04)
V _{dd} (V)	2.5 (1x)	1.8 (0.7x)	1.2 (0.5x)	1.0 (0.4x)
I _{dsat} (μΑ/μm)	600 (1x)	600 (1x)	550 (1x)	850 (1.4x)
l _{off} (nA/μm)	0.01 (1x)	0.02 (2x)	0.32 (32x)	7 (700x)
I _{gate} (nA/μm)	2.5e-5 (1x)	1.8e-3 (100x)	0.65 (5e4)	6.3 (70000x)
I _{on} /I _{off} (10e6)	60 (1x)	30 (0.5x)	1.7 (0.03x)	0.12 (0.002x)
ց_m (mS/µm)	0.3 (1x)	0.4 (1.3x)	0.6 (2x)	1.0 (3.3x)
g_{ds} (µS/µm)	7.7 (1x)	15 (2x)	42 (5.4x)	100 (13x)
g _m / g _{ds}	39 (1x)	27 (0.7x)	14 (0.36x)	10 (0.26x)
f _T (GHz)	30 (1x)	60 (2x)	80 (2.7x)	140 (4.7x)
Delay (ps/gate)	45 (1x)	30 (0.7x)	15 (0.3x)	11 (0.24x)
C _g (fF/gate)	0.47 (1x)	0.35 (0.7x)	0.25 (0.5x)	0.16 (0.34x)
C _j (fF/gate)	0.83 (1x)	0.80 (1x)	0.88 (1.1x)	0.66 (0.8x)

Positive: f_T, f_{max}, F_{min}, I_{dsat}, g_m, C_g and C_j
 Negative: V_{dd} and g_{ds}

Challenges for RF/mm-Wave in 0.13- μ m CMOS and Beyond

- High mask cost (\$0.5M \$1M)
 - only makes sense if integration level increases, e.g. RF + large DSP, or mm-wave transceiver
- Lack of a streamline RF/mm-wave design flow
- Negative impact of technology scaling
 - Device
 - Process variations
 - Model uncertainty
 - Interconnect parasitic variations
 - Circuit
 - Low voltage headroom due to reduced Vdd
 - → Develop a parasitic-aware design methodology
 - → Explore low-voltage circuit techniques

High Frequency Figures of Merit

- Minimize R_q, R_s, and R_{sub} for better performance
- Layout and biasing are both critical

Complete Macro Model

- Core model (baseline BSIM model)
- Interconnect RC (3D EM field solver)
- Gate and substrate resistances (physical model)

Gate Resistance Components

- *R*_{geltd}: distributed gate electrode resistance
- R_{gch}: channel induced gate resistance

Ref. 16

Gate Electrode Resistance

$$R_{geltd} = R_{eltd} \left(\alpha \frac{W}{L} + \beta \right) \qquad \alpha = \begin{cases} 1/3 & \text{one side connected} \\ 1/12 & \text{two sides connected} \end{cases}$$

- α models distributed effect of gate electrode
- β models external gate resistance

Ref. 16 & 18

Channel Conductance

Ref. 16

(ac effect – channel charge distribution modulated by gate voltage, derived based on diffusion current)

Layout Guideline for Gate Resistance

- Multi-finger layout in RF MOSFET is common to minimize Rgate (at the expense of more parasitic capacitance)
- Typical finger width for 0.25um device is about 5 um whereas in 0.13um CMOS is 1.5 um
- Total gate width ranges from a few 10's of micron for LNA, mixer & VCO to a few millimeters for PA
- R_{eltd} (poly resistance) scales with 1/n²
- External portion of R_{geltd} (contact resistance) scale with 1/n
- R_{ch} is independent of n to the first order

Substrate Resistance Model

- Active and STI regions have different sheet resistances
- Resistances in x and y directions modeled as parallel resistors

Analytical Model of Substrate Resistance

Ref. 17

Optimization of Substrate Resistance

Ref. 17

Interconnect RC Modeling Using 3D Field Solver

Width (μm)	nf	C _{gs_wire} (fF)	C _{gd_wire} (fF)	C _{ds_wire} (fF)
2.0	4	2.42	1.61	1.41

• Wire capacitance per finger is extracted

RF Macro Model vs. Measurement (16 x 2 μ m/0.12 μ m)

 $R_g = 9.8 \Omega$, $R_{sub} = 475 \Omega$, $C_{gs_ext} = 4 \text{ fF}$, $C_{gd_ext} = 2.9 \text{ fF}$, $C_{ds_ext} = 5.2 \text{ fF}$

Optimized Layout for fT, fmax and NF

- Parallel Rg improves f_{max} and NF_{min}
- Gate connected at both ends
- Source drain metals do not overlap
- Bulk contacts surround device

Optimal Finger Width for fT

Optimal Finger Width for fmax

- Reducing R_g vs. increasing C_{gg}
- For 0.13-μm, optimal finger width is ~2 μm
- Optimal finger width decreases with device scaling

Optimal Finger Width for NF

Noise due to Rg and Rsub can be minimized through layout optimization

Optimal Biasing for f_T, f_{MAX} and NF_{MIN}

- Peak f_{T} , f_{MAX} and NF_{MIN} characteristic current densities largely unchanged across technology nodes and foundries
- NF_{MIN} (0.15mA/µm) and peak f_{MAX} (0.2mA/µm) are close \rightarrow LNAs simultaneously optimized for noise and high gain
- In CMOS PAs optimum current swing when biased at 0.3mA/µm

Frequency Response of On-Chip Inductor Q

First Patterned Ground Shield (PGS)

- Inserted between the inductor and substrate
- PGS fingers connected in a "star" shape
- Terminates the E field
- No effect on the H field
- Improves isolation

Self-Shielded Stacked Inductors for high SRF

- Self-shielded layout can effectively boost-strap the overlap capacitance *
- 1-nH inductor can be achieved in 25x25 μm² using M5 through M8 in a 0.13-μm CMOS 8-metal process
- * C.-C. Tang, *JSSC*, April 2002.

Systematic mm-wave Design with P-Cells

- Stand-alone single device model is insufficient
- Interconnect model accuracy limited by digital RC extraction
- Test structure layout ≠ actual circuit layout

Leverage the insight to device layout optimization
 Exploit the modularity at the sub-circuit level

Sample P-Cell Layouts and Circuit Models

Diff Pair

Sub-Circuit Cell Library for mm-wave Design

- □ A unified design and modeling framework
- Each sub-circuit P-Cell has its scalable circuit model

mm-wave P-Cell Characterization Test Structures

- Measured S-parameters to validate macro models
- UMC 0.13-µm CMOS with 8 copper layers

Outline

- Background
 - Emerging mm-wave applications
 - Open design issues for mm-Wave CMOS
- CMOS for mm-wave design
 - Optimizing CMOS device performance layout & bias
 - On-chip inductors in CMOS
 - Cell-based device modeling and design methodology
 - State of the art CMOS mm-Wave design examples
- mm-Wave design techniques
 - Device characterization issues
 - Unconditionally stable, gain-matched amplifier design procedure
 - Tuned amplifier, power amplifier design examples
 - On-chip transmission line design
- Summary
- References

140-220 & 220-330 GHz On-Wafer Network Analysis

- HP8510C VNA, *Oleson Microwave Lab* mm-wave Extenders
- coplanar wafer probes made by: GGB Industries, Cascade Microtech
- •connection via short length of waveguide
- Internal bias Tee's in probes for biasing active devices
- •measurements to 100 GHz can be in coax.

GGB Wafer Probes 330 GHz available with bias Tees

High Frequency Device Gain Measurements : Standard Pads

Measuring wideband transistors is very hard ! Much harder than measuring amplifiers. Determining fmax in particular is extremely difficult on high-fmax or small devices

Standard "short pads"

must strip pad capacitance must strip pad inductance--or ft will be too high ! cal can be bad due to substrate coupling make pads small, and shield them from substrate cal can be bad due to probe coupling use small probe pitch, use well-shielded probes

High Frequency Measurements : On-Wafer LRL

Unilateral Power Gain

1) Cancel device feedback with external lossless feedback V = S

$$\rightarrow Y_{12} = S_{12} = 0$$

2) Match input and outputResulting power gain is Mason's Unilateral Gain

$$U = \frac{\left|Y_{21} - Y_{12}\right|^2}{4(G_{11}G_{22} - G_{21}G_{12})}$$

Monolithic amplifiers are not easily made unilateral \rightarrow U mostly of historical relevance to IC design

For simple BJT model, U rolls off at - 20 dB/decade \rightarrow U useful for extrapolation to find f_{max}

In III - V FETs, U shows peak from C_{ds} - R_s - R_d interaction \rightarrow U hard to use for f_{max} extrapolation

For bulk CMOS, C_{ds} is sheilded by substrate \rightarrow U should be OK for f_{max} extrapolation

Design Tools: Power Gain Definitions

....but only if unconditionally stable ...

Design Tools: Stability Factors, Stability Circles

Negative port impedance \rightarrow negative-R oscillator Tuning for highest gain \rightarrow infinite gain (oscillation)

Design Tools: Maximum Stable Gain

Yue & Rodwell, IEEE CSIC Short Course, Nov. 2006 **Design Procedure: Simple Gain-Matched Amplifier**

1E11

freq, Hz

5E11

Design Procedure: Simple Gain-Matched Amplifier

Third:

<u>Design Input & Output Tuning Networks</u> ...to provide these impedances...

...added to device, the amplifier is not yet complete...

Design Procedure: Simple Gain-Matched Amplifier

Design Procedure: Effect of Line Losses

Finally: adjusting for line losses

high line skin effect losses \rightarrow reduced gain

but line losses also increase stability factor

loss in gain are partly recovered by reducing stabilization resistance & re-tuning the design

--no analytical procedure; just component tweaking

line losses have severe impact ...in VLSI wiring environment ...particularly at 50 + GHz ...particularly with high-power amplifiers

Tuned Amplifier Examples

Note: simple gain-tuned amplifiers → limited applications Transmitters need power amplifiers: need output loadline-match, not gain-match Receivers need low-noise amplifiers: need input noise-match, not gain-match

Power Amplifier Design (Cripps method)

Power Amplifier Design (Cripps Method)

Design steps are
1) input stabilization (in-band)
2) output tuning for correct load-line
3) input tuning (match)
4) out-of-band stabilization

ts(X15.Vcollector)-ts(X15.Vemitter)

250 C VAR VAR1 Vsupply=2 Ree=8 Cee=2E-12 R=1 mOh \bigcirc \bigcirc C1 C=1 pF W=20.0 um R19 C=Cee R20 R=Ree -50 Ob W=20.0 ur C12 C=Cee F L=780 un R R21 R=Ree Ol C=Cee R22 R=Ree

Example: 60 GHz, 30 mW PA, 130 nm BiCMOS

Design: Multi-Finger Power Amplifiers: Even-mode method

-- Most multi-finger amplifiers do not use Wilkinson combiners: lines are too long Even-mode equivalent circuit maps combined design into single-device design Final design tuning (E&M simulation) with full circuit model

This method explicitly models all feed parasitics in a large multi-finger transistor <u>MUCH</u> more reliable than using single lumped model for multi-finger device

Design: Multi-Finger Amplifiers: spatial mode instabilities

Design: Multi-Finger Amplifiers: Layout Examples

mm-wave InP HBT power amplifier - Rockwell

W-band InP HBT power amplifier - UCSB

mm-wave InP HBT power amplifier - Rockwell

Low-Noise Amplifier Design-- device model

Basic model : Van der Ziel $S_{VV,R_g} = 4kTR_g \ (V^2 / Hz)$ $S_{VV,R_i} = 4kTR_i \ (V^2 / Hz)$ $S_{VV,R_s} = 4kTR_s \ (V^2 / Hz)$ $S_{II,channel} = 4kT\Gamma g_m \ (A^2 / Hz)$ $\Gamma = \begin{cases} 2/3 : \text{long channel, constant mobility} \\ > 2/3 \text{ under high field} \end{cases}$ Cross spectral - densities can be neglected (B. Hughes, IEEE Trans MTT)

Simplified noise model $S_{VV,R_{in}} = 4kTR_{in} (V^2 / Hz)$ $S_{II,channel} = 4kT\Gamma'g_m$ $\Gamma' \rightarrow \Gamma \text{ as } g_m R_s \rightarrow 0$ $\Gamma' \rightarrow 1 \text{ as } g_m R_s \rightarrow \infty$

Low-Noise Amplifier Design-- sketch of steps in F_{min} calculation

Total input noise voltage & current spectal densities :

$$S_{E_n}(f) = 4kTR_{in} + \frac{4kT\Gamma}{g_m} \left(1 + \left(2\pi f C_{gs} \right)^2 R_{in}^2 \right) (V^2 / Hz)$$

$$S_{I_n}(f) = \frac{4kT\Gamma}{g_m} \left(2\pi f C_{gs} \right)^2 (A^2 / Hz)$$

$$S_{E_n I_n}(f) = \frac{4kT\Gamma}{g_m} \left(1 + j2\pi f C_{gs} R_{in} \right) \left(j2\pi f C_{gs} \right)^* (V \times A / Hz)$$

Noise figure with a particular source impedance :

Minimum noise figure

$$F_{\min} = 1 + \frac{1}{4kT} \left[2\sqrt{S_{E_n}S_{I_n}} - \left(\text{Im}[S_{E_nI_n}]\right)^2 + 2\operatorname{Re}[S_{E_nI_n}] \right]$$
$$Z_{opt} = R_{opt} + jX_{opt} = \sqrt{\frac{S_{E_n}}{S_{I_n}}} - \left(\frac{\operatorname{Im}[S_{E_nI_n}]}{S_{I_n}}\right)^2 - j\frac{\operatorname{Im}[S_{E_nI_n}]}{S_{I_n}}$$

 \rightarrow Fukui Expression (rough)

$$\begin{split} F_{\min} &\sim 1 + 2\sqrt{\Gamma(R_s + R_g + R_i)g_m} \cdot \left(\frac{f_{signal}}{f_{\tau}}\right) \\ Z_{opt} &\sim \sqrt{\frac{R_s + R_g + R_i}{\Gamma g_{mx}}} \cdot \left(\frac{f_{\tau}}{f_{signal}}\right) + \frac{1}{j2\pi f_{signal}C_g} \end{split}$$

Low-Noise Amplifier Design

Design steps are 1) output stabilization (in-band) 2) input tuning for F_{min} 3) output tuning (match) 4) out-of-band stabilization

Noise and Available Gain Circles

Discrepancy in input noise-match & gain-match can be reduced by adding source inductance (R. Van Tuyl)

Example: 60 GHz, LNA, 130 nm BiCMOS

R16

R=175 Ohm

C3 C=1 pE

gain & noise circles after input matching note compromise between gain & noise tune

III-V MIMIC Interconnects -- Classic Substrate Microstrip

Line spacings must be ~3*(substrate thickness)

all factors require very thin substrates for >100 GHz ICs \rightarrow lapping to ~50 μ m substrate thickness typical for 100+ GHz

Coplanar Waveguide

note CPW lines, fragmented ground plane

note fragmented ground plane

note fragmented ground plane

III-V MIMIC Interconnects -- Thin-Film Microstrip

III-V MIMIC Interconnects -- Inverted Thin-Film Microstrip

inverted microstip line *narrow line spacing* \rightarrow *IC density* **Ground Plane** Low \mathcal{E}_r Via Via Some substrate radiation / substrate losses No breaks in ground plane ... no ground breaks at device placements InP 150 GHz master-slave latch still have problem with package grounding ...need to flip-chip bond

thin dielectrics \rightarrow narrow lines \rightarrow high line losses \rightarrow low current capability \rightarrow no high-Z₀ lines

InP 8 GHz clock rate delta-sigma ADC

If It Has Breaks, It Is Not A Ground Plane !

coupling / EMI due to poor ground system integrity is common in high-frequency systems whether on PC boards ...or on ICs.

No clean ground return ? $\rightarrow\,$ interconnects can't be modeled !

35 GHz static divider interconnects have no clear local ground return interconnect inductance is non-local interconnect inductance has no compact model

8 GHz clock-rate delta-sigma ADC thin-film microstrip wiring every interconnect can be modeled as microstrip some interconnects are terminated in their Zo some interconnects are not terminated ...but ALL are precisely modeled

InP 8 GHz clock rate delta-sigma ADC

VLSI mm-Wave Interconnects with Ground Integrity

...need to flip-chip bond

thin dielectrics \rightarrow narrow lines \rightarrow high line losses \rightarrow low current capability \rightarrow no high-Z₀ lines

Example: 150 GHz Master-Slave Latch

Device Technology: 500 nm InP HBT

Interconnects : inverted thin-film microstrip

Design:

All lines modeled as microstrip lines representative lines simulated in Agilent / Momentum fit to simple lossy line model (loss, Zo, velocity)

Example: 20 GHz DDFS Design (Rockwell)

designs in progress: MJ Choe

design target: 20 GHz clock rate

circuit topology: ECL

device technology: 350 GHz (500 nm) InP HBT (Rockwell)

Interconnect technology: inverted thin-film microstrip throughout → *all lines are controlled-impedance*

<u>shorter lines:</u> unterminated, but modeled

longer lines: modeled and terminated

Summary

- At 90-nm or below, CMOS can be a cost-effective choice for highly integrated mm-wave circuits
- Consideration for optimizing device layout and biasing are very similar for mm-wave and RF
- Pre-characterized cell-based mm-wave design flow will be a key enabler

References on other mm-Wave CMOS Efforts

- Prof. B. Brodersen and Prof. A. Niknejad "Design considerations for 60 GHz CMOS radios," IEEE Communications Magazine, Dec. 2004.
- Prof. A. Hajimiri "A fully integrated 24-GHz phased-array transmitter in CMOS," *IEEE JSSC*, Dec. 2005.
- Prof. B. Razavi "A 60-GHz CMOS receiver front-end" *IEEE JSSC*, Jan. 2006.
- Prof. F. Chang "A 60GHz CMOS VCO using on-chip resonator with embedded artificial dielectric for size, loss, and noise reduction," 2006 ISSCC.
- Prof. J. Laskar "60-GHz direct-conversion gigabit modulator/demodulator on liquid-crystal polymer," *IEEE TMTT*, Mar. 2006.

In case

of questions