Ultra Low Resistance Ohmic Contacts to InGaAs/InP

Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C. Gossard

ECE and Materials Departments University of California, Santa Barbara, CA S.R Bank ECE Department, University of Texas, Austin, TX

> 2007 Device Research Conference South Bend, Indiana

*uttam@ece.ucsb.edu 2007 DRC

Outline

- Motivation
- Previous Work
- Approach
- Results
- Conclusion

Device bandwidth scaling laws

Device bandwidth scaling roadmap – THz transistor

Emitter Resistance key to THz transistor

Emitter resistance effectively contributes > 50 % in bipolar logic gate delay^{*}

Contact resistance serious barrier to THz technology

2 $\Omega \cdot \mu m^2$ contact resistivity required for simultaneous THz f_t and f_{max}

*M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001

Parameter	scaling	Gen. 2	Gen. 3	Gen. 4	Gens
	law	(500 nm)	(250 nm)	(125 nm)	(62.5nm)
MS-DFF speed	γ ¹	150 GHz	240 GHz	330 GHz	480 GHz
Amplifier center	γ¹	245 GHz	430 GHz	660 GHz	1.0 THz
frequency	_				
Emitter Width	$1/\gamma^2$	500 nm	250 mm	125 nm	62.5 nm
Resistivity	$1/\gamma^2$	$16 \Omega - \mu m^2$	8Ω - μm^2	4 Ω-μm [*]	2Ω - μm^2
Base Thickness	$1/\gamma^{1/2}$	300Å	250 Å	212 Å	180 Å
Contact width	$1/\gamma^2$	300 nm	175 nm	120 nm	60 nm
Doping	γ°	7 10 ¹⁹	7 1019	7 1019	7 10 ¹⁹
	_	/cm ²	/cm ²	/cm ²	/cm ²
Sheet resistance	γ ^{1/2}	500 Ω	600 Ω	708 Ω	830 Ω
Contact p	$1/\gamma^2$	20	10 Ω-	5Ω - μm^2	2.5 Ω-
		Ω - μ m ²	μm^2		μm^2
Collector Width	$1/\gamma^2$	1.2 µm	0.60 µm	0.36 µm	0.18 μm
Thickness	1/γ	1500 Å	1060 Å	750 Å	530 Å
Current Density	y ²	4.5	9	18	36
	-	$mA/\mu m^2$	$mA/\mu m^2$	$mA/\mu m^2$	$mA/\mu m^2$
Acollector/Acmitter	γ°	2.4	2.4	2.9	2.8
.f.	y1	370 GHz	520 GHz	730 GHz	1.0 THz
f _{max}	γ ¹	490 GHz	850 GHz	1.30 THz	2.0 THz
f _{nsx} V _{BR,CBO}	γ ¹	490 GHz 4.9 V	850 GHz 4.0 V	1.30 THz 3.3 V	2.0 THz 2.75 V
f_{max} $V_{BR,CBO}$ ΔT	γ¹	490 GHz 4.9 V 39 K	850 GHz 4.0 V 50 K	1.30 THz 3.3 V 61 K	2.0 THz 2.75 V 72 K
f_{max} $V_{BR,CBO}$ ΔT I_B / L_B	γ ¹	490 GHz 4.9 V 39 K 2.3	850 GHz 4.0 V 50 K 2.3	1.30 THz 3.3 V 61 K 2.3	2.0 THz 2.75 V 72 K 2.3
f_{max} $V_{BR,CBO}$ ΔT I_B / L_B	γ ¹ γ ⁰	490 GHz 4.9 V 39 K 2.3 mA/μm	850 GHz 4.0 V 50 K 2.3 mA/μm	1.30 THz 3.3 V 61 K 2.3 mA/µm	2.0 THz 2.75 V 72 K 2.3 mA/µm
f_{max} $V_{BR,CBO}$ ΔT I_B / L_B τ_f	γ ¹ γ ⁰ 1/γ	490 GHz 4.9 V 39 K 2.3 mA/μm 340 fs	850 GHz 4.0 V 50 K 2.3 mA/μm 240 fs	1.30 THz 3.3 V 61 K 2.3 mA/μm 180 fs	2.0 THz 2.75 V 72 K 2.3 mA/μm 130 fs
f_{max} $V_{BR,CBO}$ ΔT I_B / L_B τ_f C_{cb} / I_o	γ ⁰ 1/γ 1/γ	490 GHz 4.9 V 39 K 2.3 mA/μm 340 fs 400 fs/V	850 GHz 4.0 V 50 K 2.3 mA/μm 240 fs 280 fs/V	1.30 THz 3.3 V 61 K 2.3 mA/µm 180 fs 240 fs/V	2.0 THz 2.75 V 72 K 2.3 mA/µm 130 fs 170 fs/V
$ \begin{array}{c} f_{max} \\ \hline f_{max} \\ \hline V_{BR,CBO} \\ \hline \Delta T \\ \hline I_B / L_B \\ \hline \tau_f \\ \hline C_{cb} / I_c \\ \hline C_{cb} \Delta V_{logic} / I_c \end{array} $	γ ⁰ 1/γ 1/γ 1/γ	490 GHz 4.9 V 39 K 2.3 mA/µm 340 fs 400 fs/V 120 fs	850 GHz 4.0 V 50 K 2.3 mA/μm 240 fs 280 fs/V 85 fs	1.30 THz 3.3 V 61 K 2.3 mA/µm 180 fs 240 fs/V 74 fs	2.0 THz 2.75 V 72 K 2.3 mA/µm 130 fs 170 fs/V 52 fs
$\begin{array}{c} f_{max} \\ \hline f_{max} \\ \hline V_{BR,CBO} \\ \hline \Delta T \\ \hline I_B / L_B \\ \hline \tau_f \\ \hline C_{ab} / I_a \\ \hline C_{ab} \Delta V_{logic} / I_a \\ \hline R_{bb} / (\Delta V_{logic} / I_c) \end{array}$	γ ⁰ 1/γ 1/γ 1/γ 1/γ γ ⁰	490 GHz 4.9 V 39 K 2.3 mA/μm 340 fs 400 fs/V 120 fs 0.76	850 GHz 4.0 V 50 K 2.3 mA/μm 240 fs 280 fs/V 85 fs 0.47	1.30 THz 3.3 V 61 K 2.3 mA/µm 180 fs 240 fs/V 74 fs 0.34	2.0 THz 2.75 V 72 K 2.3 mA/µm 130 fs 170 fs/V 52 fs 0.26
$\begin{array}{c} f_{max} \\ \hline f_{max} \\ \hline V_{BR,CBO} \\ \Delta T \\ \hline I_B / L_B \\ \hline \tau_f \\ \hline C_{ab} \Delta V_{logic} / I_c \\ \hline C_{ab} \Delta V_{logic} / I_c \\ \hline R_{bb} / (\Delta V_{logic} / I_c) \\ \hline C_{fr} (\Delta V_{logic} / I_c) \end{array}$	γ^{0} γ^{0} $1/\gamma$ $1/\gamma$ $1/\gamma$ $1/\gamma$ γ^{0} $1/\gamma^{3/2}$	490 GHz 4.9 V 39 K 2.3 mA/μm 340 fs 400 fs/V 120 fs 0.76 380 fs	850 GHz 4.0 V 50 K 2.3 mA/μm 240 fs 280 fs/V 85 fs 0.47 180 fs	1.30 THz 3.3 V 61 K 2.3 mA/μm 180 fs 240 fs/V 74 fs 0.34 94 fs	2.0 THz 2.75 V 72 K 2.3 mA/μm 130 fs 170 fs/V 52 fs 0.26 50 fs

Device bandwidth scaling-FETs

Source contact resistance must scale to the inverse square of device scaling Source resistance reduces g_m and I_d

Low source resistance means better NF in FETs*

$$\boxed{NF_{\min} \approx 1 + \sqrt{g_{mi}(R_s + R_g + R_i)\Gamma} \cdot \left(\frac{f}{f_{\tau}}\right)}$$

*T Takahashi ,IPRM 07

Conventional Contacts

- Conventional contacts
 - complex metallization and annealing schemes
 - Surface oxides, contaminants
 - Fermi level pinning
 - metal-semiconductor reaction improves resistance

5 Ω - μm^2 ($5\cdot 10^{\text{-8}}$ Ω - μm^2) obtained on InGaAs, used on the latest HBT results

Further improvement difficult using this technique

In-situ ErAs-InGaAs Contacts

- Epitaxial ErAs-InGaAs contact
 - Epitaxially formed, no surface defects, no fermi level pinning
 - In-situ, no surface oxides
 - thermodynamically stable
 - ErAs/InAs fermi level should be above conduction band

S.R. Bank, NAMBE , 2006

In-situ and ex-situ Contacts

- In-situ Mo Contact
 - In-situ deposition no oxide at metal-semiconductor interface
 - Fermi level pins inside conduction band of InAs

In-situ ErAs/InAs

In-situ Mo/InAs

- Ex-situ contacts
 - InGaAs surface oxidized by UV Ozone treatment
 - Strong NH4OH treatment before contact metal deposition

* S.Bhargava, Applied Physics Letters, 1997 2007 DRC

MBE growth and TLM fabrication

- MBE Growth
 - InGaAs:Si grown at 450 C
 - 3.5 E 19 active Si measured by Hall
 - ErAs grown at 450 C, 0.2 ML/s
 - Mo deposited in a electron beam evaporator connected to MBE under UHV
 - Mo cap on ErAs to prevent oxidation
 - Layer thickness chosen so as to satisfy 1-D condition in TLM
 - TLM Fabrication
 - Samples processed into TLM structures by photolithography and liftoff

– Mo and TiW dry etched in SF_6 /Ar with Ni as etch mask, isolated by wet etch

 Separate probe pads from contacts to minimize parasitic metal resistance

Contact Resistance

- Resistance measured by 4155 C parameter analyzer
- Pad spacing verified by SEM image
- Smallest gap, contact resistance
 60 % of total resistance
- 15-18 Ohm sheet resistance for all three contacts

Contact	$\rho_c(\Omega-\mu m^2)$	L _t (nm)
ErAs/InAs	1.5	300
Mo/InAs	0.5	175
TiW/InGaAs	0.7	190

 $1\Omega \cdot \mu m^2 = 1 \cdot 10^{-8} \Omega \cdot cm^{-2}$

Ex-situ Contacts

• Ex-situ contact depends on the concentration of NH_4OH^*

* A.M. Crook, submitted to APL

Thermal Stability

- Contacts annealed under N₂ flow at different temperatures
- Contacts stays Ohmic after anneal
- In-situ Mo/InAs, ex-situ TiW/InGaAs contact resistivity < 1 $\Omega\text{-}\mu\text{m}^2$ after anneal
- ErAs/InAs contact resistivity increases with anneal
- The increase could be due to lateral oxidation of ErAs

Thermal Stability

• SIMS depth profiling shows that Mo and TiW act as diffusion barrier to Ti and Au

SIMS profile of contacts annealed at 400 C

Error Analysis

- 1-D Approximation
 - Large L_t/L,
 - 1-D case overestimates ho_c
- Overlap resistance
 - Wide contact width reduces overlap resistance.
- 1-D case, Overlap resistance overestimates extracted ρ_c
- Errors
 - Pad spacing, minimized by SEM inspection
 - Resistance, minimized by using 4155C parameter analyzer
 - $\delta\rho_c\!/{\rho_c}^*$ is 60 % at 1 $\Omega\text{-}\mu\text{m}^2$, 75 % at 0.5 $\Omega\text{-}\mu\text{m}^2$

ErAs_061130C

Acc.V Spot Magn Det WD Exp

5.00 kV 3.0 3500x TLD 4.9 1

2007 DRC

10 µm

Integration into Device Processing

• HBT emitter contact*

Ti/W or Mo	Ti/W	Ti/W
InGaAs/InP emitter	InGaAs/InP emitter	
InGaAs Base	InGaAs Base	InGaAs Base
InP Collector	InP Collector	InP Collector
Sub-Collector	Sub-Collector	Sub-Collector
SI substrate	SI substrate	SI substrate
Blanket metal depostion	Dry etch Emitter metal	Dry + Wet etch Emitter

*E.Lind, Late News, DRC 2007

Source Contact in FETs

Conclusion

- Ultra Low Ohmic contacts to InGaAs/InP with $\rho_c < 1 \Omega \mu m^2$
- Contacts realized by both *in-situ* and *ex-situ*
- *In-situ* Mo/InAs and *ex-situ* TiW/InGaAs $\rho_c < 1 \Omega \mu m^2$ even after 500 C anneal
- In-situ ErAs/InAs contacts $\rho_c = 1.5 \Omega \mu m^2$, increases gradually with anneal

This work was supported by Office of Naval Research (ONR) Ultra Low Resistance Contacts program and a grant by Swedish Research Council

