Frequency Limits of InP-based Integrated Circuits

Mark Rodwell, E. Lind, Z. Griffith, S. R. Bank, A. M. Crook U. Singisetti, M. Wistey, G. Burek, A.C. Gossard **University of California, Santa Barbara**

Sponsors

J. Zolper, S. Pappert, M. Rosker DARPA (TFAST, SWIFT, FLARE)

D. Purdy, I. Mack Office of Naval Research

Kwok Ng, Jim Hutchby Semiconductor Research Corporation

Collaborators (HBT)

M. Urteaga, R. Pierson , P. Rowell, M-J Choe, B. Brar Teledyne Scientific Company

X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc.

S. Mohney Penn State University

Collaborators (III-V MOS)

A. Gossard, S. Stemmer, C. Van de Walle University of California Santa Barbara

P. Asbeck, A. Kummel, Y. Taur, University of California San Diego

J. Harris, P. McIntyre, Stanford University

C. Palmstrøm, University of Minnesota

M. Fischetti University of Massachusetts Amherst

rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax

Specific Acknowledgements

(Prof.) Erik Lind

125 nm HBTs process technology theory / epi design

Dr. Zach Griffith

500 & 250 nm HBTs 150 GHz Logic 100 GHz op-amps

Dr. Mark Wistey

InGaAs MOSFET process technology theory / epi design

THz Transistors are coming soon; both InP & Silicon

InP Bipolars: 250 nm generation: \rightarrow 780 GHz f_{max}, 424 GHz f_{τ}, 4-5 V BV_{CEO}

IBM IEDM '06: 65 nm SOI CMOS \rightarrow 450 GHz f_{max}, ~1 V operation

Intel Jan '07: 45 nm / high-K / metal gate

continued rapid progress

 \rightarrow continued pressure on III-V technologies

In	Intel's Logic Technology Evolution						
High-k + Metal							
on 45	Process Name:	P1262	<u>P1264</u>	P1266	<u>P1268</u>	<u>P1270</u>	
		Lithography:	90 nm	65 nm	45 nm	32 nm	22 nm
Mark Bohr Intel Senior Fellow Logic Technology Development	Kaizad Mistry 45 nm Program Manager Logic Technology Development	1 st Production:	2003	2005	2007	2009	2011
(intel)	1		Jan. 2007 -				

If you can't beat them, join them ! unclear if Si MOSFETs will work well at sub-22-nm gate length InGaAs/InAs/InP channels under serious investigation for CMOS VLSI.

Datta, DelAlamo, Sadana, ...

THz InP vs. near-THz CMOS: different opportunities

65 / 45 / 33 / 22 ... nm CMOS vast #s of very fast transistors ... having low breakdown, sloppy DC parameters what <u>NEW</u> mm-wave applications will this enable ?

massive monolithic mm-wave arrays \rightarrow 1 Gb/s over ~1 km

mm-wave MIMO

DC parameters limit analog precision...

THz InP vs. near-THz CMOS: different opportunities

InP HBT: THz bandwidths, good breakdown, analog precision

340 GHz, 70 mW amplifiers (design) In future: 700 or 1000 GHz amplifiers ?

M. Jones

200 GHz digital logic (design) In future: 450 GHz clock rate ?

30-50 GHz gain-bandwidth op-amps \rightarrow low IM3 @ 2 GHz In future: 200 GHz op-amps for low-IM3 10 GHz amplifiers?

Transistor Benchmarks

f_{max} matters

Tuned amplifiers: f_{max} sets bandwidth

Goal is >1 THz f_{τ} and f_{max} <50 fs C Δ V / I charging delays

BVCEO is not the only voltage limit

Need <u>Safe Operating Area</u> ...at least $BV_{ceo}/2$ at $J_{max}/2$

thermal resistance, high-current breakdown high-temperature operation (~75 C) ?

 \rightarrow emphasize InP-collector DHBTs

HBT Scaling Laws

HBT scaling laws

Goal: double transistor bandwidth when used in any circuit

- → keep constant all resistances, voltages, currents
- → reduce 2:1 all capacitances and all transport delays

 $\left(\text{emitter length } L_{\mathcal{E}}\right)$

InP DHBTs: May 2007

HBT Scaling Roadmaps

2005: InP DHBTs @ 500 nm Scaling Generation

emitter 500 nm width **16** $\Omega \cdot \mu m^2$ contact ρ 300 width, base **20** $\Omega \cdot \mu m^2$ contact ρ collector 150 nm thick, 5 mA/ μ m² current density \checkmark 5 V, breakdown f_{τ} **400** GHz **500** GHz T_{max} power amplifiers 250 GHz digital clock rate 160 GHz (static dividers)

2006: 250 nm Scaling Generation, 1.414:1 faster

emitter	500 16	250 nm wid 9 Ω·μm² a	th ccess ρ	√ √	
base	300 20	150 width, 10 Ω∙μm²	contact p	√ √ -	
collector	150 5 5	100 nm thic 10 mA/μm² 3.5 V, break	k, current dens down	sity 🗸	
f _τ f _{max} power amplifiers digital clock rate (static dividers)	400 500 250 160	500 GHz 700 GHz 350 GHz 230 GHz	(425 GHz) (780 GHz)	✓ ✓	

2007: 125 nm Scaling Generation \rightarrow almost-THz HBT

emitter	500 16	250 9	125 nm width 4 $\Omega \cdot \mu m^2$ access ρ	
base	300 20	150 10	75 width, 5 $\Omega \cdot \mu m^2$ contact ρ	
collector	150 Б Б	100 10 3.5	75 nm thick, 20 mA/μm ² current density 3 V, breakdown	
f _τ f _{max} power amplifiers digital clock rate (static dividers)	400 500 250 160	500 700 350 230	700 GHz 1000 GHz 500 GHz 330 GHz	

2008-9: 65 nm Scaling Generation—beyond 1-THz HBT

emitter	500 16	250 9	125 4	63 nm width 2.5 Ω·μm ² access ρ \checkmark
base	300 20	150 10	75 5	70 nm width, 5 $\Omega \cdot \mu m^2$ contact ρ
collector	150 5 5	100 10 3.5	75 20 3	 53 nm thick, 35 mA/μm² current density 2.5 V, breakdown
f _τ f _{max} power amplifiers digital clock rate (static dividers)	400 500 250 160	500 700 350 230	700 1000 500 330	1000 GHz 1500 GHz 750 GHz 450 GHz

HBT Scaling Challenges

Scaling challenges: What looks easy, what looks hard ?

key device parameter	required change
collector depletion layer thickness	decrease 2:1
base thickness	decrease 1.414:1
emitter junction width	decrease 4:1
collector junction width	decrease 4:1
emitter resistance per unit emitter area	decrease 4:1
current density	increase 4:1
base contact resistivity (if contacts lie above collector junction)	decrease 4:1
base contact resistivity (if contacts do not lie above collector junction)	unchanged

Hard:

Thermal resistance (ICs) <u>Emitter contact + access resistance</u> Yield in deep submicron processes Contact electromigration (?), dark-line defects (?)

Probably not as hard : Maintaining adequate breakdown for 3 V operation...

Temperature Rise: Transistor, Substrate, Package

master-slave D-Flip-Flop clock frequency, GHz

HBTs:

500 nm Generation

500 nm Generation in Manufacturing: Teledyne Self-aligned Dielectric Sidewall Process

M. Urteaga et al, 2004 IEEE Device Research Conference, June 21-23, 2004

c.f. also Minh Le et al IEDM 2006 (Vitesse)

Example ICs in 500 nm HBT

175 GHz, 7.5 mW medium-power amp.

mesa HBT UCSB

142 GHz, 800 mW master/slave latch

mesa HBT UCSB

128 GHz, 206 mW master/slave latch

V. Paidi

Z. Griffith M. Urteaga P. Rowell D. Pierson B. Brar

sidewall /pedestal HBT Teledyne

Other Results:

160 Gb/s multiplexer (T. Swahn et al, Chalmers / Vitesse) ~5000-HBT direct-digital frequency synthesis ICs (Vitesse, Teledyne)

HBTs:

250 nm Generation

250 nm scaling generation InP DHBTs

DHBTs: 250 nm Scaling Generation

Example IC Designs in 250 nm HBT

340 GHz, 70 mW, medium-power amplifiers

...fabrication planned summer/fall 2007

200 GHz master-slave latches

...fabrication on hold...

125 nm InP HBT development

Emitter Access Resistance

Erik Lind Adam Crook Seth Bank Uttam Singisetti

125 nm generation requires 5 Ω - μ m² emitter resistivities

65 nm generation requires 1-2 Ω - μ m²

Recent Results:					
ErAs/Mb	MBE in-situ	1.5 Ω - μm²			
Mb	MBE in-situ	0.6 Ω - μm²			
TiPdAu	ex-situ	$0.5 \Omega - \mu m^2$			
TiW	ex-situ	$0.7 \Omega - \mu m^2$			

Degeneracy contributes 1 Ω - μm^2

20 nm emitter-base depletion layer contributes 1 Ω - μ m² resistance

Epitaxial Layer Development for 125 nm Generation

InGaAs base: low sheet resistivity, low transit time, but collector must be graded

125 nm Emitter Process

Blanket sputter deposition TiW emitter contact metal Optical lithography → ICP reactive-ion etching ICP RIE etch of InGaAs/InP semiconductor, Selective wet etch to base

125 nm emitter

500 nm undercut at emitter ends

61 nm junction: 40 nm lateral undercut

UCSB 125 nm DHBT Development

125 nm emitter process

emitter contact resistivity ~ 0.7 Ω - μm^2

base contact resistivity ~ 3-5 Ω - μ m²

Target performance ~ 700-900 GHz simultaneous $f_t \& f_{max}$, 3-4 V breakdown

How might we build the 62.5 nm HBT ?

Mesa process: control of etch undercut with dry+wet process

Alternatives:

- dielectric sidewall process
- sidewall process with extrinsic base regrowth: allows thinner base

InP-based FETs; MOSFETs & HEMTs

InP-based HEMTs & MOSFETs : Why ?

InGaAs/InP HEMTs: mm-wave low-noise amplifiers

$$F_{\min} \approx 1 + \sqrt{g_{mi}(R_s + R_g + R_i)\Gamma} \cdot \left(\frac{f}{f_{\tau}}\right)$$

A ~2.5:1 f_{τ} / f_{signal} ratio provides 3 dB noise figure.

Low-noise 100-300 GHz preamplification is a key application for 1-THz-f_τ HEMTs

InGaAs/InP MOSFETs: post-22-nm VLSI (?)

Higher mobility and peak electron velocity than in Silicon

 \rightarrow higher (I_d/W_g) and lower (C Δ V/I) at sub-22-nm scaling (?)

Back-of-Envelope FET Scaling

Goal double transistor bandwidth when used in **any** circuit → reduce 2:1 all capacitances and all transport delays → keep constant all resistances, voltages, currents

FETs no longer scale well

<u>tunneling through oxide</u> \rightarrow high-K dielectrics (if feasible)

Some Encouraging Initial Data ...

-- non-parabolic bands (variable m*) significantly increase feasible sheet charge Asbeck / Fischetti / Taur simulate drive currents much larger than for constant-m* model

... and our current device designs ...

well: 2.5 nm InGaAs, 2.5 nm InP

N+ InGaAs/InAs extrinsic source & drain by regrowth

> device design and fabrication: Asbeck group: UCSD Taur group: UCSD Fischetti group: U. Mass Rodwell group: UCSB Palmstrøm group: U. Minn

Frequency Limits of InP-based Integrated Circuits

InP Bipolar Transistors

Scaling limits: contact resistivities, device and IC thermal resistances. 62 nm (1 THz f_{τ} , 1.5 THz f_{max}) scaling generation is feasible. 700 GHz amplifiers, 450 GHz digital logic Is the 32 nm (1 THz amplifiers) generation feasible ?

InP Field-Effect Transistors

Low electron effective mass \rightarrow difficulties with further scaling Guarded optimism regarding 22 nm generation for VLSI Serious difficulties beyond.

non-animated versions of the three key scaling slides

HBT scaling laws

Goal: double transistor bandwidth when used in **any** circuit \rightarrow keep constant all resistances, voltages, currents \rightarrow reduce 2:1 all capacitances and all transport delays $\tau_b = T_b^2/2D_n + T_b/v \rightarrow \text{thin base ~1.414:1}$ $\tau_c = T_c/2v \rightarrow \text{thin collector 2:1}$

 $C_{cb} \propto A_c/T_c \rightarrow$ reduce junction areas 4:1 $R_{ex} = \rho_c/A_e \rightarrow$ reduce emitter contact resistivity 4:1 $I_{c,Kirk} \propto A_e/T_c^2$ (current remains constant, as desired)


```
(emitter length L_E)
```

$$\Delta T \cong \frac{P}{\pi K_{InP}L_E} \ln\left(\frac{L_e}{W_e}\right) + \frac{P}{\pi K_{InP}L_E} \frac{T}{r}$$

<u>need to reduce junction areas 4:1</u> reduce widths 2:1 & reduce length 2:1 \rightarrow doubles $\Delta T \times$ reducing widths 4:1, keep constant length \rightarrow small ΔT increase \checkmark

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

Back-of-Envelope FET Scaling

Goal double transistor bandwidth when used in **any** circuit → reduce 2:1 all capacitances and all transport delays → keep constant all resistances, voltages, currents

$$\frac{1}{c_{eq}} \sim T_{ox} / \varepsilon_{ox} + T_{w} / 2\varepsilon_{well} \xrightarrow{\text{thin layers 2:1}} c_{eq} \text{ doubled}$$

$$g_{m} \sim c_{eq} v_{exit} W_{g} \xrightarrow{\text{reduce } W_{g} 2:1} g_{m}, I_{d} \text{ held constant } \checkmark$$

$$C_{gs} \sim c_{eq} L_{g} W_{g} + \alpha_{1} W_{g} \xrightarrow{\text{reduce } L_{g} 2:1} C_{gs} \text{ reduced 2:1 } \checkmark$$

$$\left(C_{gd}, C_{s-b}, C_{d-b}\right) \text{ all proportional to } W_{g} \xrightarrow{\text{reduce } L_{g} 2:1} (C_{gd}, C_{s-b}, C_{d-b}) \text{ all reduced 2:1 } \checkmark$$

$$R_{s} = \frac{\rho_{c}}{W_{g} L_{S/D}} + \frac{\rho_{s} L_{S/D}}{W_{g}} \xrightarrow{\text{reduce } L_{s/d} 2:1, \text{ reduce } \rho_{c} 4:1} (R_{s}, R_{d}) \text{ held constant } \checkmark$$

2:1 vertical scaling \rightarrow 2:1 increased $(g_m/W_g) \rightarrow$ 2:1 reduced $W_g \rightarrow 2:1$ reduced fringing capacitances

FETs no longer scale well

<u>tunneling through oxide</u> \rightarrow high-K dielectrics (if feasible)

Thin layers & low effective mass limit channel sheet charge density

Low density of states limits drive current Solomon & Laux, 2001 IEDM

 $g_m \sim c_{eq} v \cdot W_g$ where $1/c_{eq} \sim (2)\pi \hbar^2 / q^2 m_e^* + T_{ox} / \varepsilon_{ox} + T_w / 2\varepsilon_{well}$

density-of-states term dominates , limits (g_m/W_g)and (I_d/W_g) \rightarrow fringing & substrate capacitances no longer scale, can dominate over C_{gs}

Thin quantum wells have low mobility Li SST 2005; Gold et al, SSC 1987; Sakaki et al, APL 1987

$$\mu \propto \left(\partial E \,/\, \partial W\right)^{-2} \propto T_{wel}^6$$

Z. Griffith

InP DHBT: 500 nm Scaling Generation

600 nm wide emitter, 120 nm thick collector, 30 nm thick base