WE2F-01

Millimeterwave Imaging Sensor Nets: A Scalable 60-GHz Wireless Sensor Network

> Munkyo Seo*, B. Ananthasubramaniam, M. Rodwell and U. Madhow

Electrical and Computer Engineering University of California, Santa Barbara CA 93106, USA

Outline

Motivation

(1) A scalable, simplistic approach to the wireless sensor network

(2) Exploit millimeter-wave frequencies

- Proposed Approach
- Collector System
- 60-GHz Passive sensors
- Indoor Radio Experiment

Wireless Sensor Networks (WSN)

- Goal: Distributed data collection & localization to obtain an information map, D[x,y,z,t]
- Many scientific, industrial and military applications
 - Environmental monitoring,
 - Wildlife research,
 - Seismic activity detection,
 - remote sensing,
 - battle field surveillance,
 - border policing,

. . .

- planetary exploration,
- Body-area network,

Current WSN Practice

- Data collection: Multi-hop based communication

 Low-power communication
 Not very suitable for large-scale networks
- Localization: Fixed ID code, GPS, acoustics, etc
 Tends to make sensors costly, complex

Simplistic Sensor Approach

Sensor with minimal functionality Move all complexity to the collector

(1) Collector sweeps a beam
(2) Sensors receive, modulate and transmit it back.
(3) Collector jointly detects data & location

Range code MMMMMMMMMM

MMMMMMMMM

Sensor local data

sensor

Simplistic Approach

- Similarities with optical imaging & radar
- Scalability
 - Communication grows linearly as # of sensors
- Built-in Localization
 - Range resolution by a wideband range-code
 - Angular resolution by a narrow beam
- Simplistic sensors (= low-cost, low-power)
 - No communication among sensors
 - No localization capability required.
- Concerns

Need line-of-sight, complex collector signal processing

Exploit Millimeter-waves

• Motivations:

- $D = 4\pi \frac{A_e}{\lambda^2} = \frac{41,000}{\theta_{HPBW}^\circ \phi_{HPBW}^\circ}$
- Higher angular resolution @ same antenna aperture
- Higher range resolution @ same fractional BW
- High data rate
- Unlicensed band @60GHz (BW>5GHz)

Signal Processing Principle

Localization

- Goal: Find the most likely sensor location.
- How? 3-D matched filtering (M/F)
 (1) Range correlation (Tx Range code)
 (2) Azimuth correlation (w/ AGF)
 (3) Elevation correlation (w/ AGF)
 (4) Find a peak!
 Accuracy eventually limited by the received SNR
 - Maximumlikelihood detection

- Data Demodulation
 - Goal: Retrieve the local sensing data (1? 0?)
 - How? Track the peak

Round-trip Radio Link

P_t	D_{TX}	D_{RX}	D _{sens}	G_{sens}	$R_{\rm max}$ @10kbps, BER = 10^{-6}
7dBm	23dBi	40dBi	7dBi	-3dB	25m (current prototype)
25dBm	40dBi	40dBi	7dBi	-3dB	200m (possible ext.)
25dBm	40dBi	40dBi	7dBi	80dB	1,600m ("active" sensor)

60-GHz Collector Block Diagram

60-GHz Collector Transceiver

Rx Antenna (40dB)

Tx Antenna (23dB)

Remote-controlled Positioner (Az, El)

Transceiver board

60-GHz Collector System

- Transceiver with all required instruments.
- Mounted on a mobile cart.

Measured Antenna Gain Function (AGF)

AGF = (TX ANT) (RX ANT) = (23dB Horn) (40dB Cassegrain)

Azimuth, Elevation (degree)

60-GHz Passive Sensor: Block Diagram

Receive, modulate and re-radiate the beam

Simplicity, low cost, robustness, etc

60-GHz Passive Sensor: Considerations

Size: 15mm x 10mm

- Antenna
 - Patch type?
 - Slot-type?
 - Open-slot type?
- Substrate: RO4003C
 - 0.2mm, Er=3.38
 - Loss= 0.07dB/mm, Q=20
- Standard low-cost PC-board manufacturing
 - Min. line width/spacing = 5mil (125um)
 - This favors high Z0 (=90ohm)

Modulator Impedance

$$b = \Gamma_{\text{mod}} (V_{\text{mod}}) a$$

a : indident wave
b : reflected wave

- Switches between two impedance states.
- ~180 degree relative phase shift
- BPSK Modulation

Linearly-Tapered Open-Slot Antenna

Beam Pattern (7dBi)

HPBW= 50 deg

CMOS Passive Sensor (under fab.)

For low-power operation, CMOS integration is necessary

- 3-channel sensor (90-nm CMOS)
 - dc power = 0.5~3uW
- Contains a BPSK modulator and low-power, voltage-controlled ring-oscillator
 - Flip-chip interface to ANT.

Indoor Radio Experiment

Received Power vs Range

Received Spectrum (RX-IF2)

2-D Localization (M/F output)

Sweep 15.6 deg Step= 0.6 deg

collector

22

3-D Localization (M/F output)

Data Demodulation

Reference PRBS

Received signal (I)

Cross-correlation

Demodulated Data (10kbps)

Summary

- Millimeter-wave wireless sensor network

 Large-scale network w/ simplistic sensors
- 60-GHz prototype
 - Collector
 - PIN-diode based passive sensor
 - CMOS sensor (dc power: uW level)
- Indoor radio experiment (<12m)
 Data demodulation, 3D localization
- Next
 - uW CMOS sensor module
 - Large-scale radio experiment

Thank you.

Questions?

26