THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results

Mark Rodwell University of California, Santa Barbara

Coauthors

E. Lobisser, M. Wistey, V. Jain, A. Baraskar, J. Koo University of California, Santa Barbara

E. Lind Lund University

Z. Griffith, J. Hacker, M. Urteaga, D. Mensa, Richard Pierson, B. Brar **Teledyne Scientific Company**

It's a great time to be working on electronics !

Things to work on:

InP HEMTs & HBTs: extend (f_{τ} , f_{max}) to 2-3 THz, build THz ICs GaN HEMTs: develop V- and W-band power amplifiers Si MOSFETs: work to keep them scaling past 22 nm CMOS IC design: build ICs which bury the III-V's InGaAs MOSFETs: help keep VLSI scaling (maybe)

Scaling for THz Transistors

Simple Device Physics: Resistance

Good approximation for contact widths less than 2 transfer lengths.

Simple Device Physics: Depletion Layers

$$I = C \frac{\Delta V}{\Delta T} \text{ where } \frac{C}{I_{\text{max}}} = \frac{\tau}{V_{applied} + V_{depletion} + 2\phi}$$

Simple Device Physics: Thermal Resistance

Exact

Carslaw & Jaeger 1959

Long, Narrow Stripe

HBT Emitter, FET Gate

cylindrical heat flow near junction

spherical heat flow far from junction

Square (L by L)

IC on heat sink

$$R_{th} \cong \frac{1}{4K_{th}L} + \frac{1}{\pi K_{th}L}$$

planar heat flow spherical heat flow far from surface near surface

Simple Device Physics: Fringing Capacitance

 $\frac{C}{L} \cong \varepsilon \cdot \begin{bmatrix} \text{slowly - varying function} \\ \text{of } W_1 / G \text{ and } W_2 / G \end{bmatrix}$ $\approx (1 \text{ to } 3) \cdot \varepsilon$

wiring capacitance

FET parasitic capacitances

 $C_{parasitic} / L \sim \varepsilon$

VLSI power-delay limits

FET scaling constraints

To double bandwidth,

reduce thicknesses 2:1 Improve contacts 4:1 reduce width 4:1, keep constant length increase current density 4:1

Bipolar Transistor Design

$$R_{ex} = \rho_{\text{contact}} / R_{e}$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

$$\Delta T \propto \frac{P}{L_E} \left[1 + \ln \left(\frac{L_e}{W_e} \right) \right]$$

$$R_{ex} = \rho_{\text{contact}} / A_{e}$$

$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

Bipolar Transistor Scaling Laws

Changes required to double transistor bandwidth:

(emitter length L_E)

parameter	change	
collector depletion layer thickness	decrease 2:1	
base thickness	decrease 1.414:1	
emitter junction width	decrease 4:1	
collector junction width	decrease 4:1	
emitter contact resistance	decrease 4:1	
current density	increase 4:1	
base contact resistivity	decrease 4:1	

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

Thermal Resistance Scaling : Transistor, Substrate, Package

Thermal Resistance Scaling : Transistor, Substrate, Package

InP Bipolar Transistor Scaling Roadmap

Can we make a 1 THz SiGe Bipolar Transistor?

Simple physics clearly drives scaling

transit times, C_{cb}/I_c \rightarrow thinner layers, higher current density high power density \rightarrow narrow junctions small junctions \rightarrow low resistance contacts

Key challenge: Breakdown

15 nm collector \rightarrow very low breakdown (also need better Ohmic contacts)

<u>emitter</u>	InP 64 2	SiGe 18 1.2	nm width $\Omega \cdot \mu m^2$ access ρ
<u>base</u>	64 2.5	56 1.4	nm contact width, $\Omega \cdot \mu m^2$ contact ρ
<u>collector</u>	253	15	nm thick
	36	125	mA/µm²
	2.75	???	V, breakdown
$f_{ au}$	1000	1000	GHz
f_{max}	2000	2000	GHz
PAs digital (2:1 stat	1000 480 ic divider	1000 480 • metric)	GHz GHz
Assume	s collecto	r junction and intacts 2:1	3:1 wider than emitter
Assume	s SiGe co		wider than junctions

HBT Design For IC Performance

from charge-control analysis:

$$\begin{split} T_{gate} &\approx (\Delta V_L / I_C) (C_{je} + 6C_{cbx} + 6C_{cbi}) + \tau_f \\ &+ (kT / qI_C) (0.5C_{je} + C_{cbx} + C_{cbi} + 0.5\tau_f I_C / \Delta V_L) \\ &+ R_{ex} (0.5C_{cbx} + 0.5C_{cbi} + 0.5\tau_f I_C / \Delta V_L) \\ &+ R_{bb} (0.5C_{je} + C_{cbi} + 0.5\tau_f I_C / \Delta V_L). \end{split}$$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	scaling	Gen. 3	Gen. 4	Gen 5	Gen 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MC DEE mand	law	(200 nm)	(128 nm)	(64 nm)	(52 nm)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Amplifier center frequency	γ^{1} γ^{1}	430 GHz	660 GHz	1.0 THz	1.4 THz
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Emitter Width	1/72	256 nm	128 nm	64 nm	32 nm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Resistivity	$1/\gamma^2$	8 Ω-μm ²	$4 \Omega - \mu m^2$	2 Ω-μm ²	$1 \Omega - \mu m^2$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Base Thickness	1/71/2	250 Å	212 Â	180 Å	180 Å
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Contact width	$1/\gamma^2$	175 nm	120 nm	60 nm	30 nm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Doping	γ°	7 10 ¹⁹ /cm ²			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sheet resistance	$\gamma^{1/2}$	600 Ω	708 Ω	830 Ω	990 Ω
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Contact p	1/γ ²	10 Ω- μm ²	$5 \Omega - \mu m^2$	2.5 Ω- μm ²	1.25 Ω- μm ²
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Collector Width	$1/\gamma^2$	600 nm	360 nm	180 nm	90 nm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Thickness	1/γ	106 nm	75 nm	53 nm	37.5 nm
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Current Density	γ^2	9	18	36	72
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			mA/µm ²	$mA/\mu m^2$	mA/µm ²	$mA/\mu m^2$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A _{collector} /A _{emitter}	γ°	2.4	2.9	2.8	2.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	f_{z}	γ^1	520 GHz	730 GHz	1.0 THz	1.4 THz
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	fmax	γ^1	850 GHz	1.30 THz	2.0 THz	2.8 THz
$\begin{array}{c c c c c c c c c c } \Delta T & 50 \ \mathrm{K} & 61 \ \mathrm{K} & 72 \ \mathrm{K} & 83 \ \mathrm{K} \\ \hline I_E / L_E & \gamma^0 & 2.3 & 2.3 & 2.3 & mA/\mu m \\ \hline \pi_f & 1/\gamma & 240 \ \mathrm{fs} & 180 \ \mathrm{fs} & 130 \ \mathrm{fs} & 95 \ \mathrm{fs} \\ \hline C_{eb} / I_e & 1/\gamma & 280 \ \mathrm{fs}/\mathrm{V} & 240 \ \mathrm{fs}/\mathrm{V} & 170 \ \mathrm{fs}/\mathrm{V} & 120 \ \mathrm{fs}/\mathrm{V} \\ \hline C_{eb} \Delta V_{\mathrm{logic}} / I_e & 1/\gamma & 85 \ \mathrm{fs} & 74 \ \mathrm{fs} & 52 \ \mathrm{fs} & 36 \ \mathrm{fs} \\ \hline R_{bb} / (\Delta V_{\mathrm{logic}} / I_e) & \gamma^0 & 0.47 & 0.34 & 0.26 & 0.23 \\ \hline C_{je} (\Delta V_{\mathrm{logic}} / I_e) & 1/\gamma^{3/2} & 180 \ \mathrm{fs} & 94 \ \mathrm{fs} & 50 \ \mathrm{fs} & 33 \ \mathrm{fs} \\ \hline R_{ex} / (\Delta V_{\mathrm{logic}} / I_e) & \gamma^0 & 0.24 & 0.24 & 0.24 \\ \hline 670 \ \mathrm{GHz} \ \mathrm{gain} & & & 4.3 \ \mathrm{dB} & 8.7 \ \mathrm{dB} & 12.8 \ \mathrm{dB} \\ \hline 1030 \ \mathrm{GHz} \ \mathrm{gain} & & & & 4.9 \ \mathrm{dB} & 7.9 \ \mathrm{dB} \\ \hline 1030 \ \mathrm{GHz} \ \mathrm{Fmin} & & & & 7.3 \ \mathrm{dB} & 5.0 \ \mathrm{dB} \\ \hline \end{array}$	V BR.CEO		4.0 V	3.3 V	2.75 V	?
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ΔT		50 K	61 K	72K	83 K
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I_E / L_E	γ°	2.3	2.3	2.3	2.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			mA/µm	mA/µm	mA/μm	mA/µm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	τ_{f}	1/γ	240 fs	180 fs	130 fs	95 fs
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C_{cb}/I_c	1/γ	280 fs/V	240 fs/V	170 fs/V	120 fs/V
$R_{bb}/(\Delta V_{logic}/I_c)$ γ^0 0.47 0.34 0.26 0.23 $C_{je}(\Delta V_{logic}/I_c)$ $1/\gamma^{3/2}$ 180 fs 94 fs 50 fs 33 fs $R_{ee}/(\Delta V_{logic}/I_c)$ γ^0 0.24 0.24 0.24 0.24 670 GHz gain 4.3 dB 8.7 dB 12.8 dB 670 GHz Fmin 7.4 dB 5 dB 3.8 dB 1030 GHz gain 7.3 dB 5.0 dB	$C_{cb}\Delta V_{\mathrm{logic}}/I_c$	1/γ	85 fs	74 fs	52 fs	36 fs
$C_{je}(\Delta V_{logic}/I_c)$ $1/\gamma^{3/2}$ 180 fs 94 fs 50 fs 33 fs $R_{ec}/(\Delta V_{logic}/I_c)$ γ^0 0.24 0.24 0.24 0.24 670 GHz gain 4.3 dB 8.7 dB 12.8 dB 670 GHz Fmin 7.4 dB 5 dB 3.8 dB 1030 GHz gain 7.3 dB 5.0 dB	$R_{bb}/(\Delta V_{\rm logic}/I_c)$	γ°	0.47	0.34	0.26	0.23
$R_{ee}/(\Delta V_{logic}/I_e)$ γ^0 0.24 0.24 0.24 0.24 670 GHz gain 4.3 dB 8.7 dB 12.8 dB 670 GHz Fmin 7.4 dB 5 dB 3.8 dB 1030 GHz gain 4.9 dB 7.9 dB 1030 GHz Fmin 7.3 dB 5.0 dB	$C_{je}(\Delta V_{ m logic}/I_C)$	1/y ^{3/2}	180 fs	94 fs	50 fs	33 fs
670 GHz gain 4.3 dB 8.7 dB 12.8 dB 670 GHz Fmin 7.4 dB 5 dB 3.8 dB 1030 GHz gain 4.9 dB 7.9 dB 1030 GHz Fmin 7.3 dB 5.0 dB	$R_{ex}/(\Delta V_{ m logic}/I_c)$	γ°	0.24	0.24	0.24	0.24
670 GHz Fmin 7.4 dB 5 dB 3.8 dB 1030 GHz gain 4.9 dB 7.9 dB 1030 GHz Fmin 7.3 dB 5.0 dB	670 GHz gain			4.3 dB	8.7 dB	12.8 dB
1030 GHz gain 4.9 dB 7.9 dB 1030 GHz Fmin 7.3 dB 5.0 dB	670 GHz Fmin			7. <mark>4 d</mark> B	5 dB	3.8 dB
1030 GHz Fmin 7.3 dB 5.0 dB	1030 GHz gain				4.9 dB	7.9 dB
	1030 GHz Fmin	- <u></u>			7.3 dB	5.0 dB

InP HBT: Status

InP DHBTs: September 2008

popular metrics : f_{τ} or f_{max} aloneTeledyne DBHT $(f_{\tau} + f_{max})/2$ UIUC DHBT $\sqrt{f_{\tau} f_{max}}$ NTT DBHT $(1/f_{\tau} + 1/f_{max})^{-1}$

much better metrics : <u>power amplifiers</u>: PAE, associated gain, mW/ μm <u>low noise amplifiers</u>: F_{min}, associated gain, <u>digital</u>: f_{clock} , hence $(C_{cb}\Delta V / I_c)$, $(R_{ex}I_c / \Delta V)$, $(R_{bb}I_c / \Delta V)$, $(\tau_b + \tau_c)$

512 nm InP DHBT

Laboratory Technology

500 nm mesa HBT

150 GHz M/S latches

175 GHz amplifiers

Production

(Teledyne)

Z. Griffith M. Urteaga	
F. Rowell	
D. Pierson	
B. Brar	
V. Paidi	

500 nm sidewall HBT

Teledyne

 $f_{\tau} = 405 \text{ GHz}$ $f_{max} = 392 \ GHz$ $V_{br, ceo} = 4 V$

DDS IC: 4500 HBTs

Teledyne / BAE

20 GHz clock

20-40 GHz op-amps

Teledyne / UCSB

53-56 dBm OIP3 @ 2 GHz with 1 W dissipation

324 GHz Medium Power Amplifiers in 256 nm HBT

ICs designed by Jon Hacker / Teledyne Teledyne 256 nm process flow-Hacker et al, 2008 IEEE MTT-S

~2 mW saturated output power

128 / 64 / 32 nm HBT Technologies

Conventional ex-situ contacts are a mess

THz transistor bandwidths: very low-resistivity contacts are required

Interface barrier \rightarrow resistance

Further intermixing during high-current operation \rightarrow degradation

Improvements in Ohmic Contacts

128 nm generation requires ~ 4 Ω - μ m² emitter & base resistivities 64 nm generation requires ~ 2 Ω - μ m²

Contacts Mo TiW	to N-InGaAs*: MBE in-situ ex-situ / NH4 p variable betwe	0.3 (+/- 0.7) Ω - μm² re-clean ~1 to 2 Ω - μm² en process runs
Contacts	to P-InGaAs:	$bolow 250 \mu m^2$
	WDE III-SILU ov-situ	$\sim 1 \Omega_{-} \mu m^2$

*measured emitter resistance remains higher than that of contacts.

Mo Emitter Contacts: Robust Integration into Process Flow

Proposed Process Integration:

Process Must Change Greatly for 128 / 64 / 32 nm Nodes

Undercutting of emitter ends

{101}A planes: fast

128 nm Emitter Process: Dry Etched Metal & Semiconductor

results @ c.a. 200 nm emitter metal width

Planarization E/B Processes for 64 & 32 nm

What about InGaAs HEMTs ?

...& InGaAs MOSFETS ?

InGaAs HEMTs and InGaAs MOSFETs

sub-22-nm InGaAs MOSFETs being developed for potential use in VLSI

Efforts may: improve understanding HEMT & MOSFET scaling limits produce process modules which aid THz HEMTs

Key III-V MOSFET scaling limits:

low density of states \rightarrow limits $g_m \rightarrow C_{fringing}/g_m$ does not scale low $m^* \rightarrow$ high well energy \rightarrow minimum well thickness

Additional HEMT scaling limits:

high access resistance: barriers, recess regions, contacts limits to sheet concentration from small hetero-barrier energy

HBT Applications

Mixed-Signal ICs (ADCs, DACs, DDS) benefit in high-clock-rate ICs with 1k-3k devices lack of CMOS integration a major limitation → Mark Rosker's talk

Precision GHz analog ICs using THz transistors \rightarrow Sanjay Raman's talk , Zach Griffith's talks

mm-Wave Power: 60 GHz & up GaN threatens, but $f_{max} \rightarrow$ gain \rightarrow PAE

600-1000 GHz transceiver ICs for low-volume military / scientific applications <u>THz InP Bipolar Transistors: can it be done ?</u>
 Scaling limits: contact resistivities, device and IC thermal resistances.
 62 nm (1 THz f_τ, 1.5 THz f_{max}) scaling generation is feasible.
 700 GHz amplifiers, 450 GHz digital logic
 Is the 32 nm (1 THz amplifiers) generation feasible ?

THz InP Bipolar Transistors: what would we do with it ?

Mixed-Signal IC Power density & CMOS integration are serious challenges Precision GHz analog systems

mm-wave power

Sub-mm-wave electronics