InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth

Uttam Singisetti^{*}, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar, Brian J. Thibeault, C. J. Palmstrøm, A.C. Gossard, and M.J.W. Rodwell

ECE and Materials Departments University of California, Santa Barbara, CA, USA

Yanning Sun, Edward W. Kiewra, and D.K. Sadana IBM T J Watson Research Center, Yorktown Heights, NY, USA

2008 International Symposium on Compound Semiconductors Rust, Germany

*uttam@ece.ucsb.edu

Outline

- Motivation: III-V MOSFETs
- Approach: Self-aligned source/drain by MBE regrowth
- FET and Contacts Results
- Conclusion

Why III-V MOSFETs

Silicon MOSFETs:

- Scaling limit beyond sub-22 nm L_g
- Non-feasibility of sub-0.5 nm equivalent oxide thickness (EOT)

Alternative III-V channel materials

III-V materials \rightarrow lower m* \rightarrow higher velocities (v_{eff})

$$I_d / W_g = q n_s v_{eff}$$
 $I_d / Q_{transit} = v_{eff} / L_g$

$$In_{0.53}Ga_{0.47}As: m^* = 0.041 \cdot m, v_{eff} \sim v_{th} = 3.5 \cdot 10^7 \, cm/s$$

22 nm InGaAs MOSFET

- 1 nm EOT gate dielectric
- 5 nm channel with back barrier
- 15 Ω - μ m source resistance
- 5×10¹⁹ cm⁻³ source active doping²

¹ Rodwell. IPRM 2008 ² Fischetti. IEDM 2007 ISCS 2008

InGaAs MOSFET with Source/Drain regrowth

Process flow

Gate definition

Sidewall, Source/Drain

Gate Definition: Challenges

- Must scale to 22 nm
- Dielectric cap surrounding the gate for source/drain regrowth
- Metal & Dielectric etch must stop in 5 nm channel
- Dry etch must not damage thin channel

Process must leave surfaces ready for S/D regrowth

Gate Stack: Multiple Layers & Selective Etches

Key: stop etch before reaching dielectric, then gentle low-power etch to stop on dielectric

Process scalable to sub-100 nm gate lengths

Dielectric etch and sidewall formation

Surface cleaning before regrowth

- Clean organics by 30 min UV Ozone
- Ex-situ HCI:H₂O clean
- In-situ 30 min H clean
- c(4×2) reconstruction before regrowth
- Defect free regrowth

Epi-ready surface before regrowth, defect free regrowth on processed wafer

* Wistey, EMC 2008

Height selective Etching*

* Burek, J.Cryst.Growth, submitted for publication ISCS 2008

MOSFET characterstics

- Extremely low drive current: 2 μ A/ μ m
- Extremely high R_{on} = 10-100 k Ω
- Why is R_s so high?

Source Resistance 1: Poly Growth on InP

- Spotty RHEED during regrowth: faceted growth
- InP desorbs P during hydrogen clean or regrowth: InP converts to highlystrained InAs*
- From TLM measurement, R_{sh} = 310 Ω/\Box , ρ_c =130 $\Omega-\mu m^2$ and R_s = 300 $\Omega-\mu m$

Sheet resistance doesn't explain 1 $M\Omega$ - μ m source resistance.

* Wistey (in preparation)

Source Resistance 2: Gap in Regrowth

- No regrowth within 200 nm of gate because of shadowing by gate
- Gap region is depleted of electrons
- Breakdown at Vg=0V, ~ 8V, consistent with 400 nm gap and InGaAs breakdown field of 20V/ μm^*

High source resistance because of electron depletion in the gap

*http://www.ioffe.rssi.ru/SVA/NSM/Semicond/

Regrowth: Solutions

*Wistey, EMC 2008 Wistey, ICMBE 2008

Conclusion

- Scalable III-V MOSFET process with self-aligned source/drain with MBE regrowth
- Gate proces and H clean leave a epi-ready 5 nm channel
- Low drive current in initial devices because of break in regrowth
- Improved regrowth techniques in next generation of devices

This work was supported by Semiconductor Research Corporation under the Non-classical CMOS Research Program

