On the Feasibility of low-THz InP HBTs

Mark Rodwell, Z. Griffith, E. Lind*, U. Singisetti, M. Wistey, A.C. Gossard **University of California, Santa Barbara**

i*Now at Lund University

Sponsors

J. Zolper, S. Pappert, M. Rosker DARPA (TFAST, SWIFT, FLARE)

D. Purdy, I. Mack Office of Naval Research

Kwok Ng, Jim Hutchby Semiconductor Research Corporation

Collaborators (HBT)

M. Urteaga, R. Pierson , P. Rowell, M-J Choe, B. Brar Teledyne Scientific Company

X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc.

S. Mohney Penn State University

Collaborators (III-V MOS)

A. Gossard, S. Stemmer, C. Van de Walle University of California Santa Barbara

P. Asbeck, A. Kummel, Y. Taur, University of California San Diego

J. Harris, P. McIntyre, Stanford University

C. Palmstrøm, University of Minnesota

M. Fischetti University of Massachusetts Amherst

rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax

Specific Acknowledgements

(Prof.) Erik Lind 125 nm HBTs process theory / epi design

Dr. Zach Griffith 500, 250 nm HBTs 150 GHz Logic

100 GHz op-amps

Dr. Mark Wistey InGaAs MOSFET process technology theory / epi design How do we make very fast electron devices ? ...by scaling

What are the limits to scaling ? attainable contact resistivities, attainable thermal resistivities attainable contact stabilities and for FETs, attainable capacitance densities

How do we make long-term progress ? work on interfaces (contacts and gate dielectrics) !

THz InP Transistors: Opportunities

InP HBT: THz bandwidths, good breakdown, analog precision

340 GHz, 70 mW amplifiers (design) In future: 700 or 1000 GHz amplifiers ?

M. Jones

200 GHz digital logic (design) In future: 450 GHz clock rate ?

30-50 GHz gain-bandwidth op-amps \rightarrow low IM3 @ 2 GHz In future: 200 GHz op-amps for low-IM3 10 GHz amplifiers?

We will make THz transistors ...

... by scaling

InP Bipolar Transistors

Bipolar Transistor Scaling Laws

Changes required to double transistor bandwidth:

parameter	change
collector depletion layer thickness	decrease 2:1
base thickness	decrease 1.414:1
emitter junction width	decrease 4:1
collector junction width	decrease 4:1
emitter contact resistance	decrease 4:1
current density	increase 4:1
base contact resistivity	decrease 4:1

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

Status of Bipolar Transistors : September 2007

popular metrics : f_{τ} or f_{max} alone $(f_{\tau} + f_{max})/2$ $\sqrt{f_{\tau} f_{max}}$ $(1/f_{\tau} + 1/f_{max})^{-1}$

much better metrics : power amplifiers: PAE, associated gain, mW/ μm low noise amplifiers: F_{min}, associated gain, digital: f_{clock} , hence $(C_{cb}\Delta V / I_c)$, $(R_{ex}I_c / \Delta V)$, $(R_{bb}I_c / \Delta V)$, $(\tau_b + \tau_c)$

What Matters Regarding Transistor Performance?

f_{max} matters

Tuned amplifiers: f_{max} sets bandwidth

Goal is >1 THz f_{τ} and f_{max} <50 fs C Δ V / I charging delays

breakdown is not the only voltage limit

Need <u>Safe Operating Area</u> ...at least $BV_{ceo}/2$ at $J_{max}/2$

thermal resistance, high-current breakdown reduced electron velocity at high voltages high-temperature operation (~75 C) ?

Unilateral Power Gain

1) Cancel device feedback with external lossless feedback

$$\rightarrow Y_{12} = S_{12} = 0$$

2) Match input and output

Resulting power gain is Mason's Unilateral Gain

Breakdown Voltage Scaling: Expect 2.4 V @ 1 THz f_{τ}

For mature, well-scaled InP DHBTs, $f_{\tau} x BVCEO = 2.4 THz$ -Volts.

InP/InGaAs/InP & InP/GaAsSb/InP DHBTs have equal breakdown.

InP Bipolar Transistor Scaling Roadmap

512 nm InP DHBT

Laboratory Technology

500 nm mesa HBT

150 GHz M/S latches

175 GHz amplifiers

Production

(Teledyne)

Z. Griffith M. Urteaga

P. Rowell D. Pierson

B. Brar

V. Paidi

	5					
1080		X	1	W.	1	
90	अन	15 244	275 200	100-11	WD 6.3mm	

500 nm sidewall HBT

40 GHz op-amps

Teledyne / UCSB

50 dBm OIP3 @ 2 GHz with 1 W dissipation

Teledyne

$$f_{\tau} = 405 \text{ GHz}$$

$$f_{max} = 392 \text{ GHz}$$

$$V_{br, ceo} = 4 \text{ V}$$

Teledyne / BAE

20 GHz clock

DDS IC: 4500 HBTs

Let's make Audio Power Amplifiers ... in the GHz !

A 1980 hobby-project Audio power amp:

10 MHz transistors \rightarrow 1.5 MHz loop \rightarrow 36 dB feedback @ 20 kHz \rightarrow 0.02% distortion

What if we used modern InP transistors ? 350 GHz transistors \rightarrow 50 GHz loop \rightarrow 26 dB feedback @ 2.5 GHz

 \rightarrow very low distortion for 2 GHz (cell phone band etc) amplifiers ?

THz transistors → precision analog design at RF & microwave

mm-wave Op-Amps for Linear Microwave Amplification

DARPA / UCSB / Teledyne FLARE: Griffith & Urteaga

HBTs: 128 nm Generation

Sputter / Dry-Etch Emitter Process for 128 nm

Contact metal is sputtered & dry-etched Contact metal is refractory Emitter semiconductor is (mostly) dry-etched E. Lind

Improvements in Emitter Access Resistance

125 *nm* generation requires 5 Ω - μ m² emitter resistivities

65 nm generation requires 1-2 Ω - μ m²

Recent Results (ONR contacts program)					
ErAs/Mb	MBE in-situ	1.5 Ω - μm²			
Mb	MBE in-situ	0.6 Ω - μm²			
TiPdAu	ex-situ	0.5 Ω - μm²			
TiW	ex-situ	0.7 <i>Ω</i> - μm²			

Degeneracy contributes 1 Ω - μm^2

20 nm emitter-base depletion layer contributes 1 Ω - μ m² resistance

128 nm InP HBT: Technology Development

240

<u>New Emitter Process for 128 and 64 nm junctions</u> dry etched metal dry etched junction refractory W or Mo contact \rightarrow stable at very high J_e < 0.8 Ω - μ m² contact resistivity

<u>New, thin --12 nm -- base-collector grade:</u> most of collector is high- E_g InP \rightarrow does not degrade V_{brceo} grade sufficiently thin even for 64 nm HBTs

alternative epi layer designs (InP/GaAsSb/InP) are not necessary

<u>first results: close but not perfect</u> slip-ups: wide 250 nm emitters, poor base contacts only a 560GHz / 560GHz / 3 V device target was 700 / 700 / 3 ... try again soon...

128 nm HBTs in development

True scaled technology: Thinned epi reduced access resistance

Should we add a launcher in the B-C Junction ???

No!

1) Electrons already leave base @ $v_{exit} = v_{thermal} = \sqrt{kT/m^*} \sim 3.10^7 \text{ cm/s}$

2) P + /N - base - collector dipole already gives electrons 0.2 eV, accelerating them to $v_{ballistic} \sim 8.10^7 \text{ cm/s}$

Large BC band offsets reduce the Kirk - effect - limited drive current, a limitation for GaAsSb/InPDHBTs in Logic ICs.

Comparison to SiGe

1st - Order Design of a 1 THz SiGe Bipolar Transistor

Calculated from

simple BJT model, & simple scaling laws.

Parameters look scary:

 $\frac{\text{contact resistance is off ITRS roadmap}}{\text{thin collector} \rightarrow \text{very high tunneling currents}}$ Is there an alternative ?

Collector thickness determined by: supposedly: smaller transit time; $\underline{actually: smaller} C_{cb}/I_c \underline{ratio.}$ current density also determined by C_{cb}/I_c .

Emitter width determined by mA/ μ m, heating.

Contact resistivity determined by emitter: low *I*R* drops given high *J* base: desired f_{max}

Eliminating excess collector area would greatly ease all these considerations

<u>emitter</u>	18 1.2	nm width $\Omega \cdot \mu m^2$ access ρ
<u>base</u>	56 1.4	nm contact width, $\Omega \cdot \mu m^2$ contact ρ
<u>collector</u>	15 125 ???	nm thick mA/µm ² current density V, breakdown
f _t f _{max}	1000 2000	GHz GHz
PAs digital (2:1 stati	1000 480 c divider	GHz GHz metric)
Assumes of	collector ju	unction 3:1 wider than emitter

Assumes contacts 2:1 wider than junctions

Field-Effect Transistors

Simple FET Scaling

Goal double transistor bandwidth when used in any circuit → reduce 2:1 all capacitances and all transport delays → keep constant all resistances, voltages, currents

Well-Known: Si FETs no longer Scale Well

EOT is not scaling as $1/L_q$

11 0 1 / 6 4									
T _{ox} (nm) [2]	2.2	2.1	2.0	1.9	1.6	1.5	1.4	1.4	1.3
Gate Length (nm) [2]	75	65	53	45	37	32	28	25	22
g_{m}/g_{ds} at 5·L _{min-digital} [3]	47	40	32	30	30	30	30	30	30
1/f-noise (µV ² ·µm ² /Hz) [4]	190	180	160	140	100	90	80	80	70
σ V _{th} matching (mV·μm) [5]	6	6	6	6	5	5	5	5	5
I _{ds} (μA/μm) [6]	19	15	13	11	9	8	7	6	6
Peak Ft (GHz) [7]	120	140	170	200	240	280	320	360	400
Peak F _{max} (GHz) [8]	200	220	270	310	370	420	480	530	590
Marchiel Springer	1000000000	1 9010000 v	100000045455	 brothersbook 	 Startalize 	0.000000	A Reports	 Assessors 	2010/00

(ITRS roadmap copied from Larry Larson's files)

High-K gate dielectrics: significant SiO₂ interlayer \rightarrow limits gate capacitance density

It is also hard to reduce access resistance by the amount needed

Because gate oxide scales badly, modern MOSFETs scale badly output resistance drops, voltage gain drops gate capacitance does decrease, but other capacitances don't ! ... which hurts high-frequency performance

Why consider III-V (InGaAs/InP) CMOS ?

Low access resistance: 1 Ω - μm^2 , 10 Ω - μm Light electron \rightarrow high electron velocity \rightarrow increased I_d / W_g at a given oxide thickness (?) \rightarrow decreased C_{gs}/g_m at a given gate length

SRC III-V CMOS Center : What we might accomplish

Drive current simulation- ideal (ballistic) assumptions Taur & Asbeck Groups, UCSD; Fischetti Group: U-Mass: IEDM2007

22 nm gate length, 5 nm thick InGaAs / InP channel

III-V FET Scaling Limits: Implications for HEMTs

Extremely High $g_m > 2.2$ S/mm and $f_T > 550$ GHz in 30-nm Enhancement-Mode InP-HEMTs with Pt/Mo/Ti/Pt/Au Buried Gate

Keisuke Shinohara¹, Wonill Ha¹, Mark J.W. Rodwell², and Berinder Brar

Limited density of states limits sheet charge

- \rightarrow Schottky barrier leakage
- \rightarrow limits drive current, places lower limit on $C_{parasitic} \Delta V/I$

Well energy limits vertical scaling

 \rightarrow poor output conductance for < 35 nm gate length \rightarrow degraded f_{max}

High access resistance in standard HEMT structure

¹Teledyne Scientific Company, 1049 Camino Dos Rios, Thousand Oaks, CA, USA
²Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
Phone: +1-805-373-4098, Fax: +1-805-373-4860, E-mail: kshinohara@teledyne.com

Conclusions...

On the Feasibility of Few-THz Bipolar Transistors

InP Bipolar Transistors

Scaling limits: contact resistivities, device and IC thermal resistances.
 62 nm (1 THz f_τ, 1.5 THz f_{max}) scaling generation is feasible.
 700 GHz amplifiers, 450 GHz digital logic
 Is the 32 nm (1 THz amplifiers) generation feasible ?

SiGe Bipolar Transistors

Sophisticated device structure \rightarrow harder to project further progress

Contact + access resistivies & thermal resistivities are key scaling limits

