0.37 mS/µm In_{0.53}Ga_{0.47}As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain

Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Ashish K. Baraskar, Joel Cagnon, B. J. Thibeault, S. Stemmer, A.C. Gossard, and M.J.W. Rodwell

ECE and Materials Departments University of California, Santa Barbara, CA

Eun Ji Kim, Byungha Shin, and Paul C McIntyre Materials Science and Engineering, Stanford University, Stanford, CA

> Yong-ju Lee Intel Corporation, Santa Clara, CA

2009 Device Research Conference Pennsylvania State University, State College, PA

*uttam@ece.ucsb.edu

¹ DRC 2009

Outline

- Motivation: III-V MOSFETs
- Approach: Self-aligned source/drain by MBE regrowth
- FET and contacts Results
- Conclusion and future work

Why III-V MOSFETs

Silicon MOSFETs:

Gate oxide may limit <16 nm scaling

$$I_d / W_g \sim c_{ox} (V_g - V_{th}) v_{inj}$$
$$I_d / Q_{transit} \sim v_{inj} / L_g$$

Alternative: $ln_{0.53}Ga_{0.47}As$ channel MOSFETs low m* (0.041 m_o) \rightarrow high injection velocity (~ 2×10⁷ cm/s)^{*} \rightarrow increase drive current, decreased CV/I

* Enoki *et al* , EDL 1990

Target device structure

Target 22 nm gate length

Control of short-channel effects → vertical scaling 1 nm EOT: thin gate dielectric, surface-channel device 5 nm quantum well thickness <5 nm deep source / drain regions

~3 mA/µm target drive current → low access resistance self-aligned, low resisitivity source / drain contacts self-aligned N+ source / drain regions with high doping

22 nm InGaAs MOSFET: source resistance

- Source access resistance degrades I_d and g_m
- IC Package density : $L_{S/D} \sim L_g = 22 \text{ nm} \rightarrow \rho_c \text{ must be low}$
- Need low sheet resistance in thin ~5 nm N+ layer
- Design targets: $\rho_{\rm C}$ ~1 Ω – μ m², $\rho_{\rm sheet}$ ~ 400 Ω

DRC 2009 5

22nm ion implanted InGaAs MOSFET

Key Technological Challenges

- Shallow junctions (~ 5 nm), high (~5×10¹⁹ cm⁻³) doping
- Doping abruptness (~ 1 nm/decade)
- Lateral Straggle (~ 5 nm)
- Deep junctions would lead to degraded short channel effects

InGaAs MOSFET with raised source/drain by regrowth

Self-aligned source/drain defined by MBE regrowth¹

Self-aligned in-situ Mo contacts²

Process flow & dimensions selected for 22 nm L_g design; present devices @ 200 nm gate length

> ¹Wistey, EMC 2008 ²Baraskar, EMC 2009

DRC 2009

7

Regrown S/D process: key features

Self-aligned <u>& low resistivity</u> ...source / drain N+ regions ...source / drain metal contacts

Vertical S/D doping profile set by MBE abrupt on ~ 1 nm scale

Gate-first

gate dielectric formed after MBE growth uncontaminated / undamaged surface

Process flow*

UCSB

* Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009

Key challenge in S/D process: gate stack etch

Requirement: avoid damaging semiconductor surface: Approach: Gate stack with multiple selective etches^{*}

Process scalable to sub-100 nm gate lengths

* Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009

10

Key challenge in S/D process: dielectric sidewall

Sidewall must be kept thin: avoid carrier depletion, source starvation.

- Target < 15 nm sidewall in 22 nm L_g device
- 20-25 nm SiN_x thick sidewalls in present devices
- Pulse doping in the barrier: compensate for carrier depletion from D_{it}

¹¹ DRC 2009

MOSFET SEMs

Cross-section after regrowth, but before Mo deposition

Top view of completed device

MOSFET characteristics

- Maximum Drive current (I_d): 0.95 mA/μm
- Peak transconductance (g_m): 0.37 mS/ μ m

 I_d and g_m below expected values

FET source resistance

- Series resistance estimated by extrapolating R_{on} to zero gate length
- Source access resistance ~ 500 Ω – μ m

Source resistance : regrowth TLMs

- TLMs fabricated on the regrowth far away from the gate
- Regrowth sheet resistance ~ 29 Ω
- Mo/InGaAs contact resistance ~ 5.5 Ω – μ m² (12.6 Ω – μ m)

TLM data does not explain 500 Ω – μ m observed FET source resistance

¹⁵ DRC 2009

Source resistance: electron depletion near gate

- Electron depletion in regrowth shadow region (R_1)
- Electron depletion in the channel under SiN_x sidewalls (R_2)

¹⁶ DRC 2009

InAs source/drain regrowth

Improved InAs regrowth with low As flux for uniform filling¹

InAs less susceptible to electron depletion: Fermi pinning above E_c^2

 ¹ Wistey *et al*, EMC 2009 Wistey *et al* NAMBE 2009.
²Bhargava *et al*, APL 1997

Conclusion

- Self-aligned raised source/drain for scaled channel (5nm)
- D-FETs: peak $I_d = 0.95 \text{ mA}/\mu m$, and peak $g_m = 0.37 \text{ mS}/\mu m$
- InAs Source/Drain E-FETs¹
- Next:

scale to ~50 nm L_g gate dielectric quality

This work was supported by Semiconductor Research Corporation under the Non-classical CMOS Research Program

¹⁸ DRC 2009

¹Singisetti et al, EDL submitted