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III-V transistors of  ~10 to 100 nm lithographic dimensions are being developed both for THz applications and 
for use in large-scale digital integrated circuits. Reducing dimensions increases both IC packing density and 
transistor bandwidth. Increasing bandwidth of an arbitrary circuit by γ :1 requires a γ :1 reduction of transistor 
capacitances and transit delays while maintaining constant resistances and bias and signal voltages and currents. For 
bipolar transistors [1], this  requires a  ~ 1γ :1 reduction in epitaxial dimensions, a 2γ :1 reduction in contact 
resistivities, and a 2γ :1 reduction in lithographic dimensions. For field-effect transistors [2], such scaling requires 
again a γ :1 reduction in epitaxial dimensions (dielectric equivalent thickness, wavefunction depth)  and a 2γ :1 
reduction in contact resistivities,  but only requires a 1γ :1 reduction in lithographic dimensions (gate length). 
Required current densities scale with both transistor types; for HBTs, emitter current density ( 2mmA/μ ) varies as 

2γ , though current per unit emitter stripe length remains fixed, while for FETs, current per until gate width  
( mmA/μ ) varies as 1γ , but current per unit source and drain Ohmic contact area  ( 2mmA/μ ) varies as 2γ .  To build 
multi-THz HBTs and HEMTs, and to build sub-22-nm InGaAs MOSFETs, we must fabricate self-aligned contacts 
and junctions of 10-100 nm dimensions.  We must develop Ohmic contacts of ~1 2mμ−Ω contact resistivity; this 
resistivity must not increase when operating ~25-250 2mmA/μ current density, nor can the contact metals diffuse 
under such high current and thermal stress through device junctions only ~5-10 nm below the surface.  We here 
describe our efforts to develop such fabrication processes for  both InP-based FETs and HBTs.  

First, consider in more detail FET scaling in the constant-voltage, constant-velocity limit. Vertical dimensions 
( wellT , eqT ) must be reduced in proportion to gate length to maintain a constant dsm Gg / ratio and to maintain a 
constant ratio of the parallel-plate ( chgC − ) to the  fringing ( fgsC , , gdC ) components of the device input capacitance; 
in the absence of vertical scaling, drain-induced barrier lowering increases, output conductance degrades, and the 
input capacitance becomes dominated by gate fringing fields. As a consequence of vertical scaling, on-state current 
density gd WI /  increases as 1γ . It is well understood that difficulties in reducing eqT (gate leakage by tunneling) and 
in increasing DOSC [3] will impede constant-voltage FET scaling; note also that invT must scale as 1−γ , requiring 
thinner wells or stronger vertical fields, gds WRR /)( + must scale as 1−γ , requiring both lower cρ and increased 
carrier concentrations in access regions,  and  on-state inversion charge density sn must scale as 1γ , requiring 
increased gate barrier height. Further, device self-heating scales as 1γ , a serious concern for normally-on circuits 
such as sub-mm-wave amplifiers. These scaling considerations apply to equally to InGaAs FETs in development for 
VLSI and for sub-mm-wave/THz applications; device design goals include low access resistance, high drive current 
density, thin wells, high sheet carrier density,  and gate barriers that are both thin and high in energy. Future sub-
mm-wave FETs may well use high-K gate dielectrics to permit small eqT and large sn ; note that moderately high 
interface charge density itD will not impair device gain at frequencies well above the inverse of the interface trap 
lifetimes.  

Established III-V HEMT structures do not well address these scaling requirements. We have therefore 
developed a fully self-aligned InGaAs MOSFET process flow [4] (fig. 1). In this flow, 4.7 nm 32OAl gate dielectric 
is deposited by ALD on a 5 nm AsGaIn 0.470.53 channel, the gate is formed by blanket W/Cr/ 2SiO deposition and RIE 
etching, and thin ~25 nm yx NSi gate sidewalls formed. After etching the 32OAl , self-aligned S/D InAs N+ regions 
(50 nm thick, 8× 1910 -3cm , 23 Ω  sheet resistance) are formed by migration enhanced epitaxy, and self-aligned S/D 
contacts formed by in-situ blanket evaporation of Mo (3.5 2mμ−Ω contact resistance) and a subsequent height-
selective etch [5]. Mesa isolation and back-end metal completes the process. Unlike HEMTs, no gate barrier is 
present in the S/D regions, the source and drain are fully self-aligned to the gate, and carrier densities in the S/D 
access regions are high (~ -213cm105.1 × ). Figure 3 shows measured DI for a 200-nm- gL device.  

We are developing similar processes to fabricate InP HBTs with 64 nm and 128 nm eW (fig. 4). In-situ Mo 
emitter contacts [6] provide 4.01.1 ± 2mμ−Ω  contact resistivity. The emitter metal is dry-etched Mo or W to 
withstand high target current densities. Emitter and base contacts are separated by thin yx NSi sidewalls, and base 
contacts are sputter-deposited refractory metals.  
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Table 1: HBT scaling laws: changes required for 1:γ increased bandwidth in an arbitrary circuit 
parameter law parameter law 
emitter junction length, eL  (nm) 0γ  contact resistivities cρ  ( 2mμ−Ω ) 2−γ  
emitter junction width, eW  (nm) 2−γ  emitter current density ( 2mmA/μ ) 2γ  
collector junction width (nm) 2−γ  emitter current density ( mmA/μ ) 0γ  
collector depletion thickness (nm) 1−γ  temperature rise (one device, K) )/ln(~ ee WL  
base thickness (nm) ~ 2/1−γ    
 
Table 2: Constant-voltage / constant-velocity FET scaling laws:  
changes required for 1:γ increased bandwidth in an arbitrary circuit 

gate

source drain

LgLS/D LS/D TwellTox

parameter law parameter law 
gate length gL , source-drain contact lengths 

DSL / (nm) 

1−γ  gate-channel capacitance  
chgC −

1]/1/1/1[ −++= DOSsemiox CCC (fF) 
1−γ  

gate width  gW (nm) 1−γ  transconductance ginjectionchgm LvCg /~ − (mS)  0γ  
equivalent oxide thickness 

oxideSiOoxeq TT εε /
2

= (nm)  
1−γ  gate-source, gate-drain fringing capacitances 

gfgs WC ε∝,  , ggd WC ε∝   (fF)  
1−γ  

dielectric capacitance  
eqggSiOox TWLC /

2
ε= (fF) 

1−γ  S/D access resistances   sR , dR ( Ω )  0γ  
S/D  contact resistivity gs WR / , gd WR /  ( mμ−Ω ) 1−γ  

inversion thickness  2/~ wellinv TT  (nm) 1−γ  S/D  contact resistivity cρ ( 2mμ−Ω ) 2−γ  
semiconductor capacitance  

invggsemisemi TWLC /ε= (fF) 
1−γ  drain current )(~ thgsmd VVgI −  (mA)   0γ  

DOS capacitance 2*2 2/ hπnmqCDOS = (fF)  1−γ  drain current density ( mmA/μ ) 1γ  

 electron density sn ( -2cm )  1γ  temperature rise (one  device, K) 1~ −
gW  
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Figure 1: Process flow for III-V FETs with source/drain regrowth by MEE. 

 
Figure 2: Regrown S/D InGaAs FET, oblique view & cross-section.
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Figure 3: Common-source characteristics . 
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Figure 4: 
Refractory-contact 
/dry-etched 
process flow for 
128 nm /64 nm 
InP HBTs. 



 


