Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. J.W. Rodwell^a, M. A. Wistey^{a,b}, U. Singisetti^a, G. J. Burek^a, E. Kim^c, B. J. Thibeault^a, E. Lobisser^a, V. Jain^a, A. Baraskar^a, J. Cagnon^b, Y.-J. Lee^d, S. Stemmer^a, P. C. McIntyre^c, A. C. Gossard^a, B. Yu^e, P. Asbeck^e, Y. Taur^e ^aU.C. Santa Barbara, ^bUniv. of Notre Dame, ^cStanford University, ^dIntel, ^eU.C. San Diego. III-V transistors of ~10 to 100 nm lithographic dimensions are being developed both for THz applications and for use in large-scale digital integrated circuits. Reducing dimensions increases both IC packing density and transistor bandwidth. Increasing bandwidth of an arbitrary circuit by γ :1 requires a γ :1 reduction of transistor capacitances and transit delays while maintaining constant resistances and bias and signal voltages and currents. For bipolar transistors [1], this requires a $\sim \gamma^1$:1 reduction in epitaxial dimensions, a γ^2 :1 reduction in contact resistivities, and a γ^2 :1 reduction in lithographic dimensions. For field-effect transistors [2], such scaling requires again a γ :1 reduction in epitaxial dimensions (dielectric equivalent thickness, wavefunction depth) and a γ^2 :1 reduction in contact resistivities, but only requires a γ^1 :1 reduction in lithographic dimensions (gate length). Required current densities scale with both transistor types; for HBTs, emitter current density ($mA/\mu m^2$) varies as γ^2 , though current per unit emitter stripe length remains fixed, while for FETs, current per until gate width $(mA/\mu m)$ varies as γ^1 , but current per unit source and drain Ohmic contact area $(mA/\mu m^2)$ varies as γ^2 . To build multi-THz HBTs and HEMTs, and to build sub-22-nm InGaAs MOSFETs, we must fabricate self-aligned contacts and junctions of 10-100 nm dimensions. We must develop Ohmic contacts of $\sim 1 \Omega - \mu \text{m}^2$ contact resistivity; this resistivity must not increase when operating ~25-250 mA/µm² current density, nor can the contact metals diffuse under such high current and thermal stress through device junctions only ~5-10 nm below the surface. We here describe our efforts to develop such fabrication processes for both InP-based FETs and HBTs. First, consider in more detail FET scaling in the constant-voltage, constant-velocity limit. Vertical dimensions (T_{well}, T_{eq}) must be reduced in proportion to gate length to maintain a constant g_m/G_{ds} ratio and to maintain a constant ratio of the parallel-plate (C_{g-ch}) to the fringing $(C_{gs,f}, C_{gd})$ components of the device input capacitance; in the absence of vertical scaling, drain-induced barrier lowering increases, output conductance degrades, and the input capacitance becomes dominated by gate fringing fields. As a consequence of vertical scaling, on-state current density I_d/W_g increases as γ^1 . It is well understood that difficulties in reducing T_{eq} (gate leakage by tunneling) and in increasing C_{DoS} [3] will impede constant-voltage FET scaling; note also that T_{im} must scale as γ^{-1} , requiring thinner wells or stronger vertical fields, $(R_s + R_d)/W_g$ must scale as γ^{-1} , requiring both lower ρ_c and increased carrier concentrations in access regions, and on-state inversion charge density n_s must scale as γ^{-1} , requiring increased gate barrier height. Further, device self-heating scales as γ^{-1} , a serious concern for normally-on circuits such as sub-mm-wave amplifiers. These scaling considerations apply to equally to InGaAs FETs in development for VLSI and for sub-mm-wave/THz applications; device design goals include low access resistance, high drive current density, thin wells, high sheet carrier density, and gate barriers that are both thin and high in energy. Future sub-mm-wave FETs may well use high-K gate dielectrics to permit small T_{eq} and large n_s ; note that moderately high interface charge density D_u will not impair device gain at frequencies well above the inverse of the interface trap lifetimes. Established III-V HEMT structures do not well address these scaling requirements. We have therefore developed a fully self-aligned InGaAs MOSFET process flow [4] (fig. 1). In this flow, 4.7 nm Al₂O₃ gate dielectric is deposited by ALD on a 5 nm In_{0.53}Ga_{0.47}As channel, the gate is formed by blanket W/Cr/SiO₂ deposition and RIE etching, and thin ~25 nm Si_xN_y gate sidewalls formed. After etching the Al₂O₃, self-aligned S/D InAs N+ regions (50 nm thick, 8×10^{19} cm⁻³, 23 Ω sheet resistance) are formed by migration enhanced epitaxy, and self-aligned S/D contacts formed by in-situ blanket evaporation of Mo (3.5 $\Omega - \mu$ m² contact resistance) and a subsequent height-selective etch [5]. Mesa isolation and back-end metal completes the process. Unlike HEMTs, no gate barrier is present in the S/D regions, the source and drain are fully self-aligned to the gate, and carrier densities in the S/D access regions are high (~1.5×10¹³ cm⁻²). Figure 3 shows measured I_D for a 200-nm- I_V device. We are developing similar processes to fabricate InP HBTs with 64 nm and 128 nm W_e (fig. 4). In-situ Mo emitter contacts [6] provide $1.1\pm0.4~\Omega-\mu\text{m}^2$ contact resistivity. The emitter metal is dry-etched Mo or W to withstand high target current densities. Emitter and base contacts are separated by thin $\text{Si}_{x}\text{N}_{y}$ sidewalls, and base contacts are sputter-deposited refractory metals. - 1] M. Rodwell et al, IEEE Proceedings, February 2008. - 2] M. Wistey et al, Proceedings, Electrochemical Society Annual Meeting, May 2009. - 3] P. M. Solomon, S. E. Laux, 2001 IEEE IEDM - 4] U. Singisetti *et al*, Physica Status Solidi (c), Volume 6 Issue 6; M. Rodwell *et al* 2008 IEEE Indium Phosphide and Related Materials Conference; U. Singisetti *et al*, submitted to IEEE EDL; M. Wistey et al, 2009 Electronics Materials Conference. - 5] G.J. Burek et al, Journal of Crystal Growth Volume 311, Issue 7, 15 March 2009, Pages 1984-1987 - 6] A. Baraskar et al, 2009 Physics and Chemistry of Surfaces and Interfaces Conference (to be published, JVST) **Table 1:** HBT scaling laws: changes required for γ :1 increased bandwidth in an arbitrary circuit | parameter | law | parameter | law | |--|------------------|---|---------------------| | emitter junction length, $L_{\scriptscriptstyle e}$ (nm) | $\gamma^{\rm o}$ | contact resistivities ρ_c ($\Omega - \mu m^2$) | γ^{-2} | | emitter junction width, $W_{_{e}}$ (nm) | γ^{-2} | emitter current density (mA/ μ m ²) | γ^2 | | collector junction width (nm) | γ^{-2} | emitter current density (mA/μm) | γ° | | collector depletion thickness (nm) | γ^{-1} | temperature rise (one device, K) | $\sim \ln(L_e/W_e)$ | | base thickness (nm) | ~ \chi^{-1/2} | | · | **Table 2:** Constant-voltage / constant-velocity FET scaling laws: changes required for $\gamma:1$ increased bandwidth in an arbitrary circuit | $\leftarrow L_{S/D} \longrightarrow$ | $ \longleftarrow L_g \longrightarrow $ | $L_{S/D} \longrightarrow $ | $T_{ox} T_{well}$ | |--------------------------------------|---|-----------------------------|-------------------| | | gate | | _ | | source | ネネン | drain | | | | 000,000 | | | | | | | | | | | | . Т | |--|---------------------------------|--|---------------------------------| | parameter | law | parameter | law | | gate length $L_{_{\rm g}}$, source-drain contact lengths | γ^{-1} | gate-channel capacitance | γ^{-1} | | $L_{S/D}$ (nm) | | $C_{g-ch} = [1/C_{ox} + 1/C_{semi} + 1/C_{DOS}]^{-1}$ (fF) | | | gate width W_{g} (nm) | γ^{-1} | transconductance $g_m \sim C_{g-ch} v_{injection} / L_g \text{ (mS)}$ | $\gamma^{\rm o}$ | | equivalent oxide thickness | γ^{-1} | gate-source, gate-drain fringing capacitances | γ^{-1} | | $T_{eq} = T_{ox} \varepsilon_{SiO_2} / \varepsilon_{oxide}$ (nm) | | $C_{gs,f} \propto \varepsilon W_g$, $C_{gd} \propto \varepsilon W_g$ (fF) | ' | | dielectric capacitance | γ^{-1} | S/D access resistances R_s , $R_d(\Omega)$ | γ^{0} | | $C_{ox} = \varepsilon_{SiO_2} L_g W_g / T_{eq} (fF)$ | | S/D contact resistivity R_s/W_g , R_d/W_g ($\Omega - \mu m$) | γ^{-1} | | inversion thickness $T_{inv} \sim T_{well} / 2$ (nm) | γ^{-1} | S/D contact resistivity $\rho_c (\Omega - \mu \text{m}^2)$ | γ^{-2} | | semiconductor capacitance | γ^{-1} | drain current $I_d \sim g_m(V_{es} - V_{th})$ (mA) | γ° | | $C_{semi} = \varepsilon_{semi} L_g W_g / T_{inv} \text{ (fF)}$ | | | | | DOS capacitance $C_{DOS} = q^2 nm^* / 2\pi\hbar^2$ (fF) | γ^{-1} | drain current density (mA/μm) | $\gamma^{\scriptscriptstyle 1}$ | | electron density n_s (cm ⁻²) | $\gamma^{\scriptscriptstyle 1}$ | temperature rise (one device, K) | ~ W _g ⁻¹ | top of gate side of gate Mo S/D metal with N+ InAs underneath Act / SpelMage De WO | 200 mm 100 NV 30 100000 TILD 51 0000000 ME E.000C.00 0.8 L = 200 nm W = 8 µm 0.7- W = 200 nm W = 8 µm 0.5- V = 0.6 V = 0.5 V steps 0.4- V = Figure 2: Regrown S/D InGaAs FET, oblique view & cross-section. Figure 3: Common-source characteristics. Figure 4: Refractory-contact /dry-etched process flow for 128 nm /64 nm InP HBTs.