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Abstract -- We report InP/InGaAs/InP Double 
Heterojunction Bipolar Transistors (DHBT) with  maxf  
= 425 GHz and τf   = 141 GHz using transferred-
substrate technology. This is the highest reported maxf  
for a DHBT. The breakdown voltage BVCEO is 8 V at JC  
= 5 ××××104 A/cm2 and the DC current gain β is 43. 

 

I. INTRODUCTION 

Very wide bandwidth Double Heterojunction 
Bipolar Transistors (DHBT) will enable high-power 
amplifiers at 94 and 180 GHz, microwave analog 
digital converters, microwave direct digital frequency 
synthesis, fiber optic transmission at >40 Gb/s and 
wireless data networks at frequencies above 100 
GHz.[1] 

InP/InGaAs/InP DHBT with record maxf = 425 
GHz have been fabricated using transferred substrate 
method.[2] Transferred substrate single 
heterojunction bipolar transistors (SHBTs) have 
demonstrated very high bandwidth and are potential 
candidates for very high speed integrated circuit 
applications.[2,3].  The transferred substrate SHBTs, 
however, have very low breakdown voltage, BVCEO ~ 
1.5 V. This letter reports a InP/InGaAs/InP 
transferred substrate DHBT with record maxf  and a 
high breakdown voltage, BVCEO = 8 V at JC ~ 5×104 
A/cm2. 

Extrapolating at 20dB/decade, the power gain cut-
off frequency maxf  = 425 GHz and the current gain 
cut-off frequency τf  = 141 GHz. The record maxf  
results from the scaling of HBT emitter and collector 
junction widths. 

II. EPITAXIAL STRUCTURE AND FABRICATION 
 
Table. I shows the MBE grown layer structure. As 

heat flows through the emitter, a thin 300 Å InGaAs 
emitter contact layer was used for low thermal 
resistance. We used compositionally graded 
InGaAs/InAlAs layers at each interface between InP 
and InGaAs layers. The base layer is 400 Å thick and 
is Be-doped at 4×1019/cm3. To reduce the base transit 

time, we designed the base layer with 50 meV band 
gap grading, introduced by varying the Ga:In ratio. 

 

Layer Material Doping Thickness 
(Å) 

Emitter 
Cap InGaAs 1 × 1019 : Si 300 

Grade InGaAs/ 
InAlAs 1 × 1019 : Si 200 

N++ 
Emitter InP 1 × 1019 : Si 900 

N- 
Emitter InP 8 × 1017 : Si 300 

Grade InGaAs/ 
InAlAs 8 × 1017 : Si 233 

Grade InGaAs/ 
InAlAs 8 × 1017 : Be 67 

Base InGaAs 4 × 1019 : Be 400 

Grade InGaAs/ 
InAlAs 1 × 1016 : Si 480 

Delta 
Doping InP 1.6 × 1018 : Si 20 

Collector InP 1× 1016 : Si 2500 

Table I - Layer structure of MBE grown 
InP/InGaAs/InP DHBT  

 
The 0.5×8 µm2 emitter contact metal was defined 

by optical projection lithography. The emitter-base 
mesa was formed by selective wet etching and 
nonselective citric-based wet etching. Undercutting of 
the emitter metal during emitter etching results in a 
~0.4×7.5 µm2 emitter junction area. Subsequent steps 
are similar to [2]. Selective wet etching was used for 
base mesa isolation. The 1.2×8.75 µm2 Schottky 
collector contact was made on a 3000 Å thick InP 
collector layer after removing the S.I. InP substrate. 

 
I. Results 

 
Fig. 1 shows the common emitter DC 

characteristic of a device with 0.5×8 µm2 emitter and 
1.2×8.75 µm2 collector mask dimensions. The offset 
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voltage was 0.2 V and satceV ,  was 1 V as shown in Fig. 
1(a), while the DC current gain β = 43. Fig. 2 (b) 
represents the BVCEO for a typical device with the 
same junction dimensions. The BVCEO = 8 V at JC ~ 5 
×104 A/cm2.  
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Fig. 1. – Common Emitter DC characteristics of 
0.5×8 µm2 emitter and 1.2×8.75 µm2 collector 
devices. (a) Ib step = 30 µA and DC gain β = 43 
and  (b) Ib step = 20 µA and BVCEO = 8 V at Jc ~ 
5×104 A/cm2  

 
Fig 2 shows the RF characteristics of the device of 

which DC data was shown in Fig. 1(a) The devices 
were characterized by on-wafer network analysis 
from 1 - 45 GHz and 75 - 110 GHz. The cut-off 
frequencies τf  = 139 GHz and maxf = 425 GHz were 
measured at IC  = 4.5 mA and VCE = 1.9 V (Fig. 2). 
With high- maxf  HBTs, Ccb is low, resulting in a low 
reverse transmission S12. Small measurement errors in 
S12 arising from parasitic probe-probe 
electromagnetic coupling then result in significant 
measurement errors in determination of the transistor 

Ccb and maxf . To obtain accurate measurements, the 
network analyzer was calibrated with on-wafer line-
reflect-line (LRL) microstrip calibration standards. 
Reference planes are offset from the probe pads by 
230 µm, resulting in a minimum 460 µm probe-probe 
separation, and reduced probe-probe coupling. 
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Fig. 2 - Small signal current and power gains vs. 
frequency at IC = 4.5 mA and VCE = 1.9 V 
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Fig. 3 - Variation of τf  and maxf  with collector 
current at VCE = 1.9 V 
 
Fig. 3 shows the collector current dependence on 

cut-off frequencies. The highest τf  =141 GHz was 
measured at IC = 5.2 mA and VCE = 1.9 V. Because of 
the offset-reference-plane on-wafer LRL calibration, 
the 1 - 45 GHz data is well matched to the 75 - 110 
GHz data and gain slopes are close to the expected 
 -20 dB/decade. 
 

III. SUMMARY 
We have demonstrated InP/InGaAs/InP double 

heterojunction bipolar transistor with record maxf  = 
425 GHz using transferred substrate technology. 
Measured DC gain was 43. RF characteristics were 

(a) 

(b) 
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successfully measured for 1 – 45 GHz and 75 – 110 
GHz frequency range with on wafer LRL calibration 
method.  

For further improvement on maxf , it is feasible to 
adopt carbon doped base at >1020/cm3, improving 
both the base sheet and contact resistance. Also, the 
improved design of the collector-base grade should 
improve the transistor τf  . 
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