# TRANSFERRED-SUBSTRATE InP/InGaAs/InP DOUBLE HETEROJUNCTION BIPOLAR TRANSISTORS WITH f<sub>max</sub>=425 GHz

S. Lee, H. J. Kim, M. Urteaga, S. Krishnan, Y. Wei, M. Dahlström and M. Rodwell

Department of ECE, University of California, Santa Barbara, CA 93106

Abstract -- We report InP/InGaAs/InP Double Heterojunction Bipolar Transistors (DHBT) with  $f_{max}$ = 425 GHz and  $f_r$  = 141 GHz using transferredsubstrate technology. This is the highest reported  $f_{max}$ for a DHBT. The breakdown voltage  $BV_{CEO}$  is 8 V at  $J_C$ = 5×10<sup>4</sup> A/cm<sup>2</sup> and the DC current gain  $\beta$  is 43.

#### I. INTRODUCTION

Very wide bandwidth Double Heterojunction Bipolar Transistors (DHBT) will enable high-power amplifiers at 94 and 180 GHz, microwave analog digital converters, microwave direct digital frequency synthesis, fiber optic transmission at >40 Gb/s and wireless data networks at frequencies above 100 GHz.[1]

InP/InGaAs/InP DHBT with record  $f_{max} = 425$  GHz have been fabricated using transferred substrate method.[2] Transferred substrate single heterojunction bipolar transistors (SHBTs) have demonstrated very high bandwidth and are potential candidates for very high speed integrated circuit applications.[2,3]. The transferred substrate SHBTs, however, have very low breakdown voltage,  $BV_{CEO} \sim 1.5$  V. This letter reports a InP/InGaAs/InP transferred substrate DHBT with record  $f_{max}$  and a high breakdown voltage,  $BV_{CEO} = 8$  V at  $J_C \sim 5 \times 10^4$  A/cm<sup>2</sup>.

Extrapolating at 20dB/decade, the power gain cutoff frequency  $f_{\text{max}} = 425$  GHz and the current gain cut-off frequency  $f_r = 141$  GHz. The record  $f_{\text{max}}$ results from the scaling of HBT emitter and collector junction widths-

#### II. EPITAXIAL STRUCTURE AND FABRICATION

Table. I shows the MBE grown layer structure. As heat flows through the emitter, a thin 300 Å InGaAs emitter contact layer was used for low thermal resistance. We used compositionally graded InGaAs/InAlAs layers at each interface between InP and InGaAs layers. The base layer is 400 Å thick and is Be-doped at  $4 \times 10^{19}$ /cm<sup>3</sup>. To reduce the base transit

| time | e, we | des  | igned  | the  | base   | layer   | with  | 50  | meV     | band |
|------|-------|------|--------|------|--------|---------|-------|-----|---------|------|
| gap  | gradi | ing, | introd | uceo | d by v | varying | g the | Ga: | In rati | 0.   |

| Layer                      | Material          | Doping                    | Thickness<br>(Å) |
|----------------------------|-------------------|---------------------------|------------------|
| Emitter<br>Cap             | InGaAs            | $1 \times 10^{19}$ : Si   | 300              |
| Grade                      | InGaAs/<br>InAlAs | $1 \times 10^{19}$ : Si   | 200              |
| N <sup>++</sup><br>Emitter | InP               | $1 \times 10^{19}$ : Si   | 900              |
| N⁻<br>Emitter              | InP               | $8 \times 10^{17}$ : Si   | 300              |
| Grade                      | InGaAs/<br>InAlAs | $8 \times 10^{17}$ : Si   | 233              |
| Grade                      | InGaAs/<br>InAlAs | $8 \times 10^{17}$ : Be   | 67               |
| Base                       | InGaAs            | $4 \times 10^{19}$ : Be   | 400              |
| Grade                      | InGaAs/<br>InAlAs | $1 \times 10^{16}$ : Si   | 480              |
| Delta<br>Doping            | InP               | $1.6 \times 10^{18}$ : Si | 20               |
| Collector                  | InP               | $1 \times 10^{16}$ : Si   | 2500             |
| Table                      | I _ Laver         | structure of              | MRF grown        |

Table I
Layer
structure of
MBE
grown

InP/InGaAs/InP
DHBT
InP/InGAS/InP
DHBT
InP/InF
InP/InF
InP/I

The  $0.5 \times 8 \ \mu\text{m}^2$  emitter contact metal was defined by optical projection lithography. The emitter-base mesa was formed by selective wet etching and nonselective citric-based wet etching. Undercutting of the emitter metal during emitter etching results in a ~ $0.4 \times 7.5 \ \mu\text{m}^2$  emitter junction area. Subsequent steps are similar to [2]. Selective wet etching was used for base mesa isolation. The  $1.2 \times 8.75 \ \mu\text{m}^2$  Schottky collector contact was made on a 3000 Å thick InP collector layer after removing the S.I. InP substrate.

## I. Results

Fig. 1 shows the common emitter DC characteristic of a device with  $0.5 \times 8 \ \mu\text{m}^2$  emitter and  $1.2 \times 8.75 \ \mu\text{m}^2$  collector mask dimensions. The offset

voltage was 0.2 V and  $V_{ce,sat}$  was 1 V as shown in Fig. 1(a), while the DC current gain  $\beta = 43$ . Fig. 2 (b) represents the  $BV_{CEO}$  for a typical device with the same junction dimensions. The  $BV_{CEO} = 8$  V at  $J_C \sim 5 \times 10^4$  A/cm<sup>2</sup>.



Fig. 1. – Common Emitter DC characteristics of 0.5×8  $\mu$ m<sup>2</sup> emitter and 1.2×8.75  $\mu$ m<sup>2</sup> collector devices. (a)  $I_b$  step = 30  $\mu$ A and DC gain  $\beta$  = 43 and (b)  $I_b$  step = 20  $\mu$ A and  $BV_{CEO}$  = 8 V at  $J_c \sim 5 \times 10^4$  A/cm<sup>2</sup>

Fig 2 shows the RF characteristics of the device of which DC data was shown in Fig. 1(a) The devices were characterized by on-wafer network analysis from 1 - 45 GHz and 75 - 110 GHz. The cut-off frequencies  $f_{\tau} = 139$  GHz and  $f_{max} = 425$  GHz were measured at  $I_C = 4.5$  mA and  $V_{CE} = 1.9$  V (Fig. 2). With high- $f_{max}$  HBTs,  $C_{cb}$  is low, resulting in a low reverse transmission  $S_{12}$ . Small measurement errors in  $S_{12}$  arising from parasitic probe-probe electromagnetic coupling then result in significant measurement errors in determination of the transistor

 $C_{cb}$  and  $f_{max}$ . To obtain accurate measurements, the network analyzer was calibrated with on-wafer line-reflect-line (LRL) microstrip calibration standards. Reference planes are offset from the probe pads by 230 µm, resulting in a minimum 460 µm probe-probe separation, and reduced probe-probe coupling.



Fig. 2 - Small signal current and power gains vs. frequency at  $I_C = 4.5$  mA and  $V_{CE} = 1.9$  V



Fig. 3 - Variation of  $f_{\tau}$  and  $f_{\text{max}}$  with collector current at  $V_{CE} = 1.9 \text{ V}$ 

Fig. 3 shows the collector current dependence on cut-off frequencies. The highest  $f_r = 141$  GHz was measured at  $I_C = 5.2$  mA and  $V_{CE} = 1.9$  V. Because of the offset-reference-plane on-wafer LRL calibration, the 1 - 45 GHz data is well matched to the 75 - 110 GHz data and gain slopes are close to the expected -20 dB/decade.

## III. SUMMARY

We have demonstrated InP/InGaAs/InP double heterojunction bipolar transistor with record  $f_{max} =$ 425 GHz using transferred substrate technology. Measured DC gain was 43. RF characteristics were successfully measured for 1 - 45 GHz and 75 - 110 GHz frequency range with on wafer LRL calibration method.

For further improvement on  $f_{\rm max}$ , it is feasible to adopt carbon doped base at >10<sup>20</sup>/cm<sup>3</sup>, improving both the base sheet and contact resistance. Also, the improved design of the collector-base grade should improve the transistor  $f_{\rm r}$ .

## ACKNOWLEDGMENT

This work was supported by the ONR under grant number N00014-01-1-0066. We acknowledge the efforts of Amy Liu and her colleagues at IQE who supplied the MBE-grown DHBT wafers.

#### REFERENCES

- [1] M. Rodwell, Q. Lee, D. Mensa, J. Guthrie, S. Jaganathan, T. Mathew, and S. Long, "48 GHz Digital ICs Using Transferred Substrate HBT", *IEEE GaAs IC Symp. Tech. Dig.*, 1998, pp. 113-117
- [2] Q. Lee, B. Agarwal, R. Pullela, D. Mensa, J. Guthrie, L. Samoska, and M. Rodwell, "A >400 GHz  $f_{max}$  transferred-substrate heterojunction bipolar transistor IC technology", *IEEE Electron Device Lett.*, 1998, 19, pp. 77-79
- [3] Q. Lee, S. C. Martin, D. Mensa, R. P. Smith, J. Guthrie, and M. J. W. Rodwell, "Submicron transferred-substrate heterojunction bipolar transistors", *IEEE Electron Device Lett.*, 1999, 20, (8), pp. 396-398