Compound Semiconductor IC Symposium 2010

A 204.8GHz Static Divide-hy-8 Frequency Divider in 250 nm InP HBT

Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and Bobby Brar

Teledyne Scientific Company, Thousand Oaks, CA 91360, USA *Department of Electrical and Computer Eng., UC Santa Barbara
e-mail: zgriffith@teledyne.com, phone: 805-373-4104

Why Static Frequency Dividers ?

MS flip-flops are very widely-used high speed digital circuits:

- Dividers are master-slave flip-flop with inverting feedback
- Connection as 2:1 frequency divider provides simple test method

Standard benchmark of logic speed:

- Performance comparisons across technologies

Dynamic, super-dynamic, frequency dividers:

- Higher maximum frequency than true static dividers
- Narrow-band operation \rightarrow applications are limited

High speed technology performance for static dividers:

- 250nm InP HBT: NGAS 200.6GHz (2009), TSC/UCSB 204.8GHz (2010)
- Advanced SiGe HBT: Infinion 110^{+}GHz

SCIENTIFIC COMPANY

Fast divider design - identifying dominant gate delays

Gate Delay Determined by :
Depletion cap acitance charging through the logic swing

$$
\left(\frac{\Delta V_{L O G I C}}{I_{C}}\right)\left(C_{c b}+C_{b e, \text { depletion }}\right)
$$

Depletion cap acitance charging through the base resistance

$$
R_{\mathrm{bb}}\left(C_{c b}+C_{b e, \text { depletion }}\right)
$$

Supplyingbase + collector stored charge
through the base resistance

$$
R_{\mathrm{bb}}\left(\tau_{b}+\tau_{c}\right)\left(\frac{I_{C}}{\Delta V_{\text {LOGIC }}}\right)
$$

The logic swing must be at least $\Delta V_{\text {LOGIC }}>6\left(\frac{k T}{q}+R_{e x} I_{c}\right)$

200GHz dividers - collector design for 250nm HBTs

collector

Collector Field Collapse (Kirk Effect)

$$
V_{c b}+\phi>+\left(J / v_{s a t}-q N_{d}\right)\left(T_{c}^{2} / 2 \varepsilon\right)
$$

Collector Depletion Layer Collapse

$$
V_{c b, \min }+\phi>+\left(q N_{d}\right)\left(T_{c}^{2} / 2 \varepsilon\right)
$$

$$
\Rightarrow J_{\max }=2 \varepsilon v_{s a t}\left(V_{c e}+V_{c e, \min }\right) / T_{c}^{2} \quad \text { (1-D collector current flow) }
$$

0.25 um HBT, 200 GHz divider - vertical, lateral scaling for $J_{e}=10 \mathrm{~mA} / \mathrm{um}^{2}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{cb}, 2} \frac{\Delta \mathrm{~V}_{\text {logic }}}{\mathrm{I}_{\mathrm{c}}}=\frac{\varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{r}} \frac{1}{2} \mathrm{~A}_{\mathrm{c}, 1}}{\frac{2}{3} \mathrm{~T}_{\mathrm{C}, 1}} \frac{\Delta \mathrm{~V}_{\text {logic }}}{2 \mathrm{~J}_{\mathrm{e}, 1} \cdot \frac{1}{2} \mathrm{~A}_{\mathrm{e}, 1}}=\frac{3}{4} \mathrm{C}_{\mathrm{cb}, 1} \frac{\Delta \mathrm{~V}_{\text {logic }}}{\mathrm{I}_{\mathrm{C}}} \\
& \mathrm{C}_{\mathrm{cb}, 2} \frac{\Delta \mathrm{~V}_{\text {logic }}}{\mathrm{I}_{\mathrm{c}}}=\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}} \frac{1}{2} \mathrm{~A}_{\mathrm{c}, 1}}{\mathrm{~T}_{\mathrm{C}, 1}} \frac{\Delta \mathrm{~V}_{\text {logic }}}{2 \mathrm{~J}_{\mathrm{e}, 1} \cdot \frac{1}{2} \mathrm{~A}_{\mathrm{e}, 1}}=\frac{1}{2} \mathrm{C}_{\mathrm{cb}, 1} \frac{\Delta \mathrm{~V}_{\text {logic }}}{\mathrm{I}_{\mathrm{c}}}
\end{aligned}
$$

Lateral scaling, current spreading for $\mathrm{J}_{\mathrm{e}}=10 \mathrm{~mA} / \mathrm{um}^{2}$

Key HBT Scaling Limit \rightarrow Emitter Resistance

ECL delay not well correlated with f_{τ} or $f_{\max }$
Largest delay is charging $C_{c b}$
$\mathrm{C}_{\mathrm{cb}} \frac{\Delta \mathrm{V}_{\text {logic }}}{\mathrm{I}_{\mathrm{c}}}=\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{A}_{\text {collector }}}{\mathrm{T}_{\mathrm{C}}} \frac{\Delta \mathrm{V}_{\text {logic }}}{J_{\mathrm{e}} \mathrm{A}_{\text {emiter }}}$; where $J_{\mathrm{e}, \text { max }} \propto 1 / T_{\mathrm{c}}^{2}$.
$\rightarrow \mathrm{J}_{\mathrm{e}} \cong 10 \mathrm{~mA} / \mu \mathrm{m}^{2}$ needed for 200 GHz clock rate
Voltage drop of emitter resistance becomes excessive $R_{e x} I_{c}=\rho_{e x} J_{e}=\left(15 \Omega \cdot \mu \mathrm{~m}^{2}\right) \cdot\left(10 \mathrm{~mA} / \mu \mathrm{m}^{2}\right)=150 \mathrm{mV}$
\rightarrow considerable fraction of $\Delta \mathrm{V}_{\text {logic }} \cong 300 \mathrm{mV}$
Degrades logic noise margin
$\rightarrow \rho_{\mathrm{ex}} \leq 7 \Omega \cdot \mu \mathrm{~m}^{2}$ needed for 200 GHz clock rate

This slide presented at BCTM 2004 for phase-I 150GHz divider. HBT metrics here invoked to demonstrate the phase-III 200 GHz divider.

$\mathbf{C}_{\mathrm{ch}} / \mathbf{I}_{\mathbf{c}}$ Charging Rate: ECL delays lower than CML

Design approach for 200GHz logic

Approach: (new design elements presented in bold)

- Emitter coupled logic (ECL) topology
- Faster HBTs with lower C_{cb} and lower $\mathrm{R}_{\mathrm{ex}}\left(\Omega-\mathrm{um}^{2}\right)$
- Scaled device from $0.5 u m$ to $0.25 u m$
- 150 nm collector, 30 nm base ($400 \mathrm{GHz} \mathrm{f}_{\mathrm{t}}, 650 \mathrm{GHz}_{\text {max }}$)
- Reduce signal bus and loading delays
- Decreased device-to-device spacing
- Thin-film microstrip with low loss $\varepsilon_{\mathrm{r}}=2.7$
- Resistive pulldown voltage biasing
- Small peaking inductance $\mathrm{L}_{\text {peak }}$
- Emitter-follower HBTs having reduced C_{cb} (Q1, Q2)
- Collector-base DC voltage V_{cb} increased

Schematic of a flip-flop configured as a static divider

A Teledyne Technologies Company

IC micrographs of the TSC 200GHz Static Frequency Dividers

Final fabrication, top-metal ground plane omitted

Divide-by-2 circuit, 36 HBTs ($0.42 \times 0.41-\mathrm{mm}^{2}$)

Divide-by-8 circuit, 108 HBTs ($0.68 \times 0.45-\mathrm{mm}^{2}$)

TSC/UCSB/GSC 150GHz divider [September 2004]

Summary of divider physical size:

- 5um device-to-device spacing
- Two-sided collector HBT
- Latch width $=112 \mathrm{um}$
- Latch-to-buffer signal distance $=190 \mathrm{um}$

Phase-I divider @ 152GHz

Close-up view of flip-flop interconnect, configured for divide-by-2

TSC/UCSB 200GHz divider - scaling summary

Prohe-station for 200GHz divider testing

Probe station for 200 GHz testing
SCIENTIFIC COMPANY
A Teledyne Technologies Company

Divide-by-8 static divider operating to 204.8GHz

- Peak divider toggle rate is 204.8 GHz
- Expected output at 25.60 GHz , no spectral content at lower frequencies
- Input divider operational down to 4.0 GHz to confirm static operation at all frequencies
- $3^{\text {rd }}$-stage divider is operating at 1.0 GHz clock (differential 350 mV p-p), 500 MHz final output
- P_{DC} of divide-by-8 circuit $=1.82 \mathrm{~W}$
- Input divider operating at $204.8 \mathrm{GHz}, \mathrm{P}_{\mathrm{DC}}=592 \mathrm{~mW}$

SCIENTIFIC COMPANY
A Teledyne Technologies Company

Sensitivity plot of the 204.8GHz static divider

Divider output $-\mathrm{f}_{\text {clk }}=204.8 \mathrm{GHz}, \mathrm{f}_{\text {out }}=25.60 \mathrm{GHz}$

Chart 13

Sensitivity plot, 204.8GHz static divider

- Sensitivity plot of the divider: $0.1-50 \mathrm{GHz}, 61.5-113.25 \mathrm{GHz}, 182.4-204.8 \mathrm{GHz}$
- Expected trends of input power sensitivity versus frequency observed
- Source-free self oscillation (no input signal) reference to the input is 143 GHz
- A record static divide-by-8 frequency divider has been demonstrated
- 108 HBTs, all having 250nm features
- TSC 4-metal layer, mixed-signal interconnect
- Operational from 4.0 GHz to 204.8 GHz
- Total $P_{D C}=1.82 \mathrm{~W}$, input divider only (no buffers) $=592 \mathrm{~mW}$

SUMMARY OF THE FASTEST REPORTED STATIC FREQUENCY DIVIDERS

Max. Clock Freq. (GHz)	Division Rate	Technology	Scale (nm)	Reference
110	4	SiGe HBT	140	Infinion [3]
151.6	4	InP HBT	400	HRL [4]
152.0	2	InP HBT	500	Teledyne [1]
152	4	InP HBT	500	Lucent [5]
200.6	2	InP HBT	250	NGAS [6]
204.8	8	InP HBT	250	Teledyne, this work

- Continued increases to static divider toggle rate require balanced reductions to HBT base $R_{b b}$ and emitter resistance $R_{e x}$, and junction capacitances $\mathrm{C}_{\mathrm{j}}, \mathrm{C}_{\mathrm{cb}}$.
- Presentation (Tues-F1) by M. Urteaga discusses recent HBT developments

Acknowledgement

- This work was supported under the DARPA TFAST program, Sanjay Raman program manager.

Thank you!!

