In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs

Ashish Baraskar¹, Vibhor Jain¹, Mark A. Wistey³, Evan Lobisser¹, Brian J. Thibeault¹, Arthur C. Gossard^{1,2}, Mark J. W. Rodwell¹ ¹ECE and ²Materials Departments, University of California, Santa Barbara, CA ³Electrical Engineering, University of Notre Dame, IN

INTRODUCTION

GOAL: High Frequency Electronics

- THz electronics limited by metal-semiconductor contacts • Need contact resistivity (ρ_c) < 2x10⁻⁸ Ω -cm² for f_t and f_{max} >1 THz ^[1]
- Usually involve high temperature processing; high current densities (~100 mA/ μ m²)
- Unpredictable native oxides

Fundamental Scaling Laws

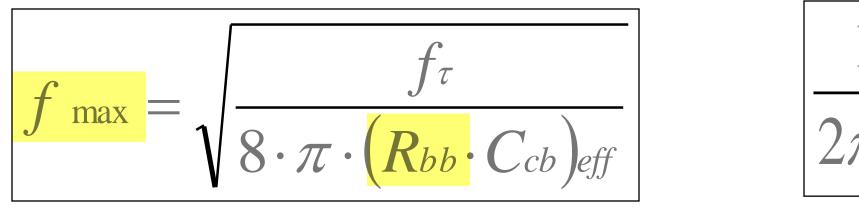
Ex-situ Contacts

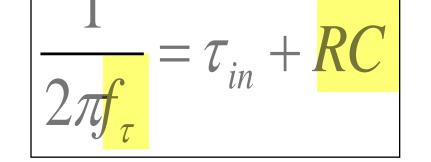
- Surface exposed to air
- Oxidized with UV-ozone for 30 min
- Dilute HCI (1:10) etch and DI rinse for 1 min each
- Hydrogen cleaning at 70 °C for 30 min in MBE system
- Surface morphology verified by RHEED
- Ir deposition in the e-beam chamber connected to MBE chamber

Why Ir?

 Refractory metal (melting point ~ 2460 °C) • Work function ~ 5.7 eV; closer to E_v for InGaAs • Easy to deposit by e-beam technique

Process	Surface Preparation	ρ _c (Ω-μm²)	ρ _h (Ω-μm)
In-situ	As grown	1.0±0.6	11.5±3.3
Ex-situ	HCI etch +	1.5 ± 0.9	17.4 ± 4.2
(air exposure)	H clean (MBE)		


- Hole concentration, $p = 1.5 \times 10^{20} \text{ cm}^{-3}$
- Mobility, $\mu = 36 \text{ cm}^2/\text{Vs}$
- Sheet resistance, R_{sh} = 105 ohm/ (100 nm thick film)


 ρ_c lower than the best reported contacts to p-InGaAs ($\rho_c = 4 \ \Omega - \mu m^2$)^[5,6]

To double device bandwidth:

- Cut transit time 2x
- Cut RC delay 2x

Scale contact resistivities by 4:1*

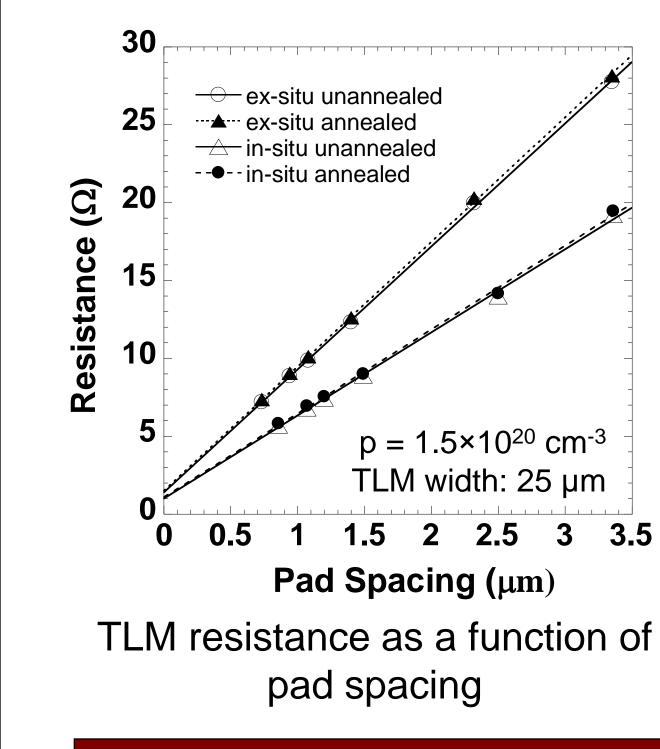
InP Bipolar Transistor Scaling Roadmap

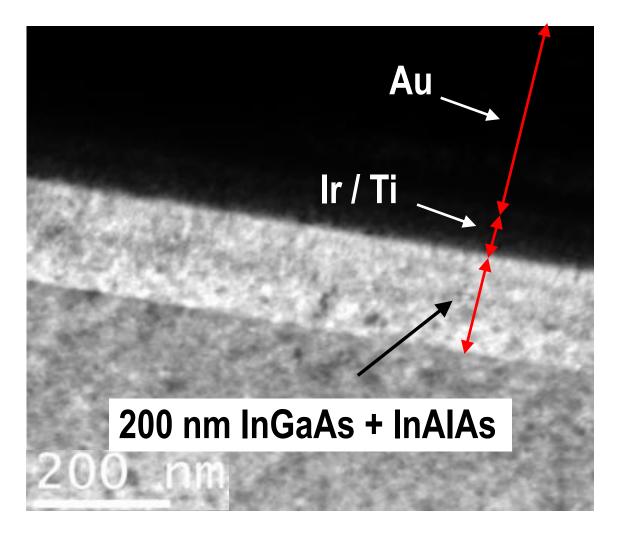
Emittor	256	128	64	32	nm, width
Emitter	8	4	2	1	Ω·μm ² , access ρ
Baaa	175	120	60	30	nm, contact width
Base	10	5	2.5	1.25	Ω ·μm ² , contact ρ
ft	520	730	1000	1400	GHz
fmax	850	1300	2000	2800	GHz

Less than 2 Ω - μ m² contact resistivity required

Atomic H Cleaning:

- Oxides and hydrocarbons form the majority of surface impurities
- Atomic H reacts with oxides to form volatile products ^[3] $As_2O_x + 2xH \longrightarrow xH_2O^{\dagger} + As_2^{\dagger}$ $\ln_2 O_3/Ga_2 O_3 + 4H \rightarrow 2H_2 O^{\dagger} + \ln_2 O/Ga_2 O^{\dagger}$ $\ln_2 O_3/Ga_2 O_3 + 4H \rightarrow H_2O^{\dagger} + 2InOH/2GaOH^{\dagger}$ • Similarly carbon containing complexes (InGaAs-C) are broken into volatile products


Characterization and Measurements


- TLM Fabrication by photolithography and liftoff
- Ir dry etched in SF_6 /Ar with Ni as etch mask; InGaAs isolation by wet etch
- Separate probe pads from contacts to minimize parasitic metal resistance

Thermal Stability:

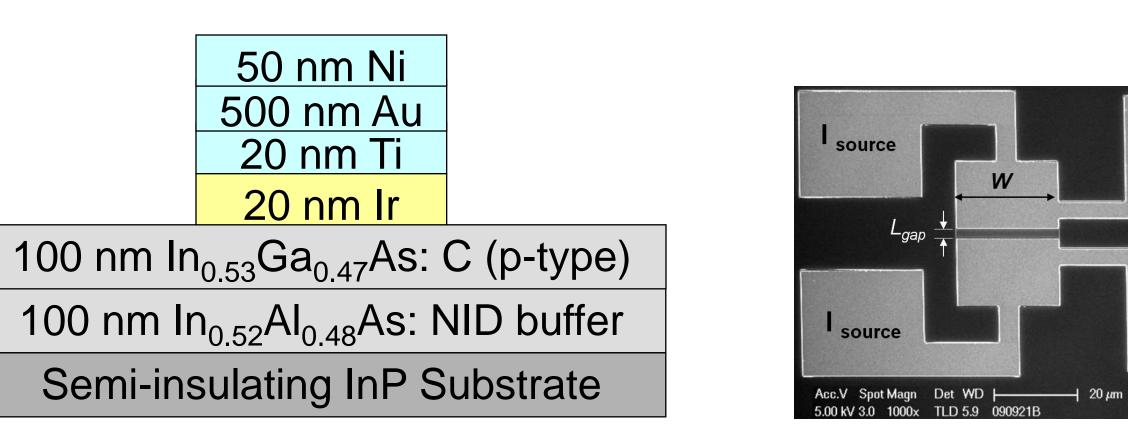
• Contacts annealed under N₂ flow at 250 °C for 60 min.

Process	ρ _c (Ω-μm²)			
	Un-annealed	annealed		
In-situ	1.0±0.6	1.2±0.7		
Ex-situ (air exposure)	1.5 ± 0.9	1.8 ± 0.9		

TEM image of the Ir/p-InGaAs contact after annealing

Error Analysis

for simultaneous THz f_t and f_{max} ^[2]


Approach

- Requirements for achieving low resistance, stable ohmic contacts
- Higher number of active carriers
- Better surface preparation techniques
- Use of refractory metal for thermal stability

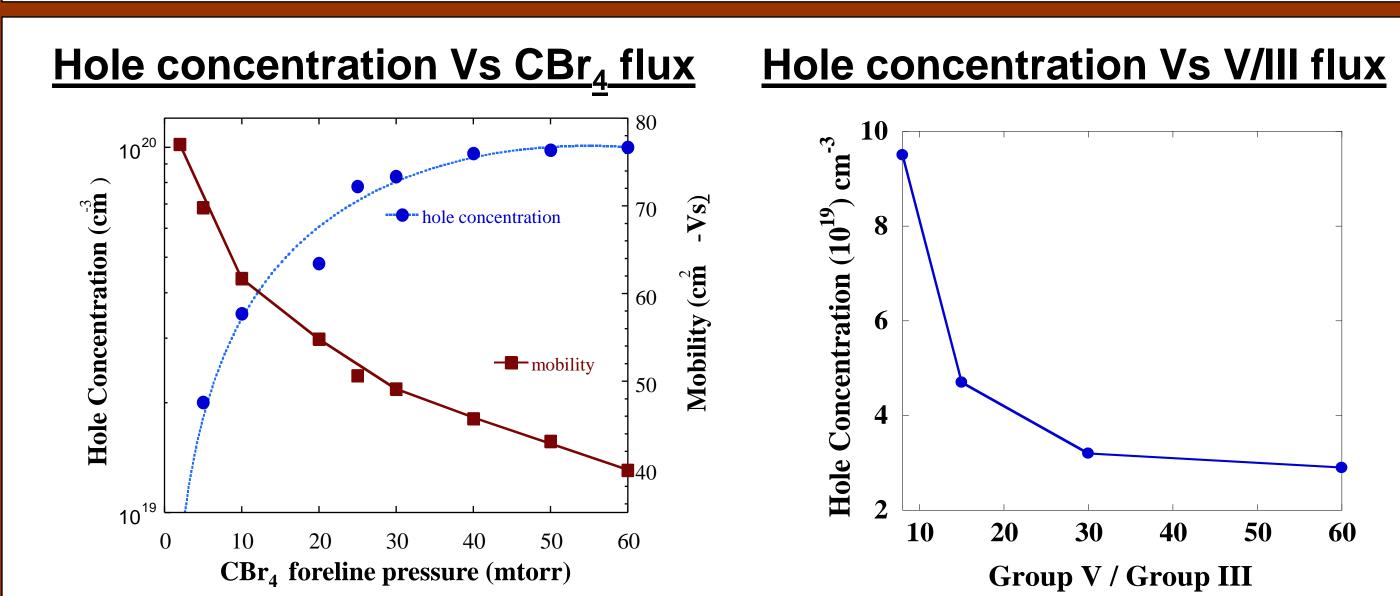
- Scaled device \longrightarrow thin base
- (For 80 nm device: t_{base} < 25 nm)
- Non-refractory contacts may diffuse at higher temperatures through base and short the collector
- Pd/Ti/Pd/Au contacts diffuse about 15 nm in InGaAs on

- Gap Spacing: $0.5 25 \mu m$ (verified by SEM)
- Resistance measured by 4155C parameter analyzer

Cross-section schematic of the metal-semiconductor contact layer structure used for TLM measurements

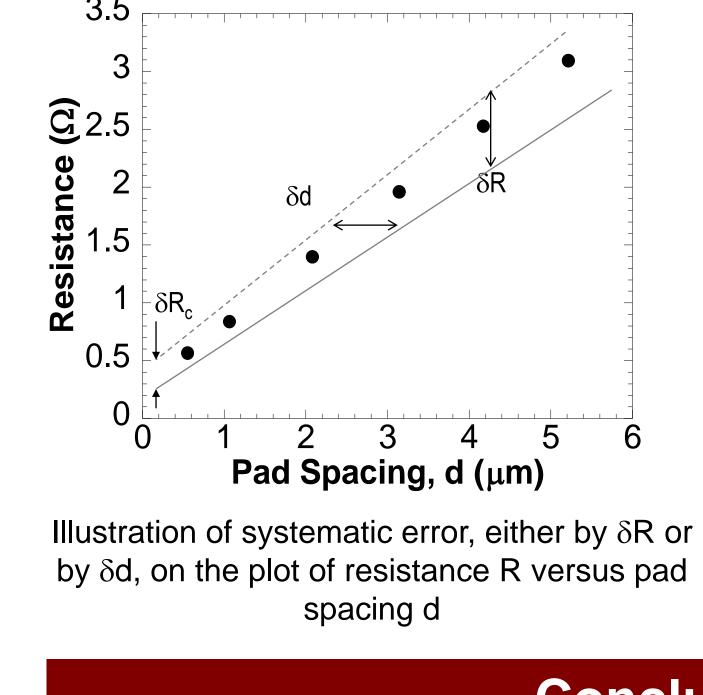
50 nm Ni

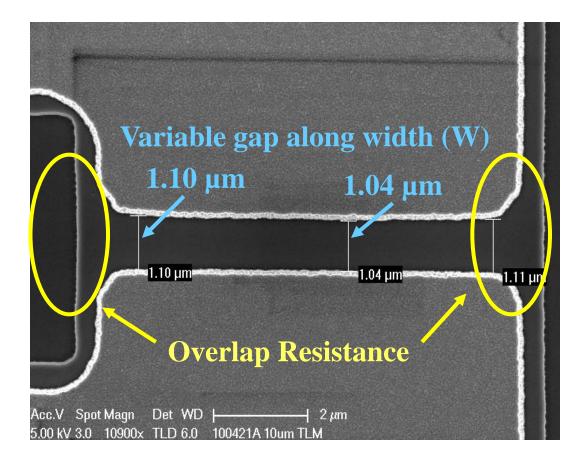
500 nm Au


20 nm Ti

20 nm lr

Schematic of the TLM pattern used for the contact resistivity measurement


V_{sense}


RESULTS

Error due to extrapolation

- Error in 4-point probe resistance measurements
- Resolution error in SEM
- Error due to processing
- Variable gap along width (W)
- Overlap resistance

SEM images of the TLM sample illustrating the errors due to processing

Conclusions

Low contact resistivity with in-situ Ir contacts:

annealing

Need a refractory metal for thermal stability

EXPERIMENTAL DETAILS

Epilayer Growth

Semiconductor epilayer growth by Solid Source Molecular Beam Epitaxy (SS-MBE) – p-InGaAs/InAIAs • Semi insulating InP (100) substrate • Unintentionally doped InAIAs buffer

• Hole concentration determined by Hall measurements

In-situ contacts

In-situ iridium (Ir) deposition immediately after film growth -E-beam chamber connected to MBE chamber -No air exposure after film growth

• Hole concentration saturates at high CBr₄ fluxes • Number of di-carbon defects increases as CBr₄ flux increases^[4] • As V/III ratio decreases hole concentration increases hypothesis: As-deficient surface drives C onto group-V sites

2 104 ^ε. <u>E</u> 10²⁰ ່ ຮູ້1.6 10²⁰ <u>ចុំ</u> ត្ថ1.2 10²⁰ Concentration -Tsub = 350 °C 8 10¹⁹ - Tsub = 460 °C As flux: 1.5×10⁻⁶ torr 60 80 20 100 450 CBr₁ foreline pressure (mtorr) Substrate Temp. (°C) Tendency to form di-carbon defects increases as T_{sub} increases^[4]

$\rho_{\rm c} \sim (1.0 \pm 0.6) \ \Omega - \mu m^2$

• ρ_c with ex-situ Ir contacts ((1.5 ± 0.9) Ω - μ m²) is comparable to that obtained with in-situ contacts.

• Slight degradation in ρ_c on annealing but contacts still suitable for THz transistors

References:

- 1. M. J. W. Rodwell, M. L. Le, B. Brar, IEEE Proceedings, 96, Issue 2, Feb. 2008 pp 271 – 286
- 2. M. J. W Rodwell et al., Proceedings, IEEE Compound Semiconductor Integrated Circuit Symposium, 2008
- 3. Bell et. al., Surface Science **401** (1998) 125–137
- 4. Tan et. al. Phys. Rev. B 67 (2003) 035208
- 5. Griffith *et al*, Indium Phosphide and Related Materials, 2005. 6. Jain et al, IEEE Device Research Conference, 2010

Acknowledgements: ONR, DARPA-TFAST, DARPA-FLARE

Hole concentration Vs substrate temperature