#### THz Bipolar Transistors: Design and Process Technologies

#### Mark Rodwell University of California, Santa Barbara

E. Lobisser, V. Jain, A. Baraskar, M. Seo, B. J. Thibeault, University of California, Santa Barbara

M. Seo, Z. Griffith, J. Hacker, M. Urteaga, Richard Pierson, B. Brar **Teledyne Scientific Company** 

# Why THz Transistors ?

#### Why Build THz Transistors? 500 GHz digital logic $\rightarrow$ fiber optics 35 30 THz amplifiers $\rightarrow$ THz radios <mark>→ imaging, sensing,</mark> communications Transistor Power Gain, dB 00 00 25 STREEC 00 00 00 00 00 00 20 000 00 **Higher-Resolution** precision analog design 00 00 00 at microwave frequencies Microwave ADCs, DACs, 15-→ high-performance receivers **DDSs**



# Why Bipolars for Fast Analog Applications ?



high resolution ADCs and DACs for 2-20, 38 GHz

BJTs, particularly InP, have high breakdown



#### CMOS does not serve all ICs low analog gain high C. /C





# How to Make THz Transistors

# Changes required to double transistor bandwidth



(emitter length  $L_E$ )

| HBT parameter                         | change         |
|---------------------------------------|----------------|
| emitter & collector junction widths   | decrease 4:1   |
| current density (mA/µm <sup>2</sup> ) | increase 4:1   |
| current density (mA/µm)               | constant       |
| collector depletion thickness         | decrease 2:1   |
| base thickness                        | decrease 1.4:1 |
| emitter & base contact resistivities  | decrease 4:1   |

nearly constant junction temperature  $\rightarrow$  linewidths vary as (1 / bandwidth)<sup>2</sup>



| FET parameter                                               | change       |
|-------------------------------------------------------------|--------------|
| gate length                                                 | decrease 2:1 |
| current density (mA/ $\mu$ m), g <sub>m</sub> (mS/ $\mu$ m) | increase 2:1 |
| channel 2DEG electron density                               | increase 2:1 |
| gate-channel capacitance density                            | increase 2:1 |
| dielectric equivalent thickness                             | decrease 2:1 |
| channel thickness                                           | decrease 2:1 |
| channel density of states                                   | increase 2:1 |
| source & drain contact resistivities                        | decrease 4:1 |

constant voltage, constant velocity scaling

fringing capacitance does not scale  $\rightarrow$  linewidths scale as (1 / bandwidth )

#### 256 nm Generation InP HBT

#### 340 GHz dynamic frequency divider



#### 340 GHz VCO M. Seo, UCSB/TSC



#### 324 GHz amplifier J. Hacker, TSC



150 nm thick collector



# **InP Bipolar Transistor Scaling Roadmap**



# **Conventional ex-situ contacts are a mess**

THz transistor bandwidths: very low-resistivity contacts are required



Interface barrier  $\rightarrow$  resistance

Further intermixing during high-current operation  $\rightarrow$  degradation

## In-Situ Refractory Ohmics on Regrown N-InGaAs



TEM by Dr. J. Cagnon, Stemmer Group, UCSB

### Process Must Change Greatly for 128 / 64 / 32 nm Nodes



#### Undercutting of emitter ends

{101}A planes: fast





## 128 / 64 nm process: Dry-Etched Emitter Metal

Molv

Мо

emitter base

In-situ MBE emitter contacts: refractory→ high J low contact  $\rho$ : ~0.7  $\Omega$ - $\mu$ m<sup>2</sup>

Refractory emitter contact dry-etched→ nm resolution refractory→ high current

Wet/dry etched emitter dry-etched  $\rightarrow$  nm resolution

conventional base liftoff high penetration  $\rightarrow$  thick bases moderate contact  $\rho \sim 4\Omega - \mu m^2$ yield issues?







### **Dry-Etched W/TiW Emitter Contact Process**



E. Lobisser

#### V. Jain E. Lobisser













V. Jain

E. Lobisser

### 128 / 64 nm process: Sputtered Refractory Base

In-situ MBE emitter contacts: refractory  $\rightarrow$  high J low contact  $\rho$ : ~0.7  $\Omega$ - $\mu$ m<sup>2</sup>

<u>Refractory emitter contact</u> dry-etched  $\rightarrow$  nm resolution refractory  $\rightarrow$  high current

 $\frac{\text{Wet/dry etched emitter}}{\text{dry-etched} \rightarrow \text{nm resolution}}$ 

<u>Refractory base contacts</u> low penetration  $\rightarrow$  thin bases low contact  $\rho \sim 2.5 \Omega - \mu m^2$ self-aligned/ liftoff-free





V. Jain

E. Lobisser

## **In-Situ Refractory Ohmics on P-InGaAs**

| Metal Contact | $ ho_c (\Omega-\mu m^2)$ | $\rho_h \left( \Omega - \mu m \right)$ |
|---------------|--------------------------|----------------------------------------|
| In-situ Ir    | $\boldsymbol{1.0\pm0.7}$ | $11.5 \pm 3.3$                         |



In-situ base contacts good enough for 32 nm node Remaining work: contacts on processed surfaces contact thermal stability & reliability

A. Baraskar

## **Benefits of refractory base contacts**



After 250°C anneal, Pd/Ti/Pd/Au *diffuses* 15nm into semiconductor deposited Pd thickness: 2.5nm base now 30 nm thick: observed to degrade with thinner bases

Refractory Mo contacts do not diffuse measurably

Refractory, non-diffusive metal contacts for thin base semiconductor

A.. Baraskar

## **Sputtered Process for in-situ base contacts**

- Blanket ex-situ Pd/W contacts
- Planarization and etch back
- Low contact resistivity
- Lift-off free and Au free base process
- Self-aligned process for thin emitters
- Enables refractory, in-situ base contacts



## Sub-100 nm HBTs : planarized base contact







## 670 GHz Transceiver Simulations in 128 nm InP HBT

#### transmitter exciter Simulations @ 670 GHz (128 nm HBT) LNA: 9.5 dB Fmin at 670 GHz PA: 9.1 dBm Pout at 670 GHz IF 10 LO /CO 15 reference <del>,</del> 20 10 dB(S(2,1 static static dynamic dynamic 128nm 128nm -10 -700 -10 6 8 720 640 660 680 -2 SP.freq, GHz receiver P free-running VCO: RF · single-sideband spectral density , dBc vco -50 dBc (1 Hz) 10 Total PLL LO VCO phase noise -50 reference @ 100 Hz offset ິສະ -100at 620 GHz (phase 1) closed-loo VCO noise multiplied reference nois pha -150 -10<sup>1</sup> 10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup> 10<sup>5</sup> 10 static static dynamic dynamic offset from carrier, Hz 950 GHz Input 3-layer thin-film THz interconnects 690 GHz Input -0.9--0.9 Dynamic divider: thick-substrate--> high-Q TMIC novel design, thin -> high-density digital 1 05 simulates to 950 GHz 1.05 M3 metal 3: microstrip -1.2 lines 195 10<sup>-12</sup> 197.5 10<sup>-12</sup> 200 10-1 195 10<sup>-12</sup> 197.5 10<sup>-12</sup> 200 10 12 time, seconds time, seconds **10**μ**m** metal 2: dense IC wiring Mixer: ę metal 1: Gain 25 ground plane for 10.4 dB noise figure 20 Б M3 microstrip dense IC wiring 15-SI-InP 11.9 dB gain via ð 10 E. Noise -10.00 -5.000 0.0000 5.000 -15.00 10 00

LO Power

## InP HBT Fundamental Oscillators to > 340 GHz

M. Seo UCSB M. Rodwell UCSB M. Urteaga TSC TSC HBT Technology

Differential Topology, Cascode output buffer, ECL outputs Fixed frequency and voltage controlled designs





## InP HBT 331 GHz Dynamic Frequency Dividers

M. Seo UCSB M. Rodwell UCSB M. Urteaga TSC Z. Griffith TSC TSC HBT Technology

Topology: Double-balanced mixer with emitter follower feedback and resonant loading Modified version of modern dynamic divider (H.M. Rein)

Inverted microstrip wiring

Freq

Amptd

Marker

BW, Swp

Traces

State

Design variations with input for external clock source and with integrated fixed frequency and voltage controlled oscillators for testing.



#### Chip photograph





#### Output spectrum with 331.2 GHz clock input

# THz 240 GHz PA Design

T. Reed UCSB M. Urteaga TSC Z. Griffith TSC TSC HBT Technology



# **THz Transistors**

Device scaling (Moore's Law) is not yet over.

Scaling  $\rightarrow$  multi-THz transistors.

Challenges in scaling: contacts, dielectrics, heat

Multi-THz transistors: for systems at very high frequencies for better performance at moderate frequencies

Vast #s of THz transistors complex systems new applications.... imaging, radio, and more



#### **On-Wafer TRL Calibration Envirnoment**



#### 0.5-67GHz Data: Lumped Pads, Off Wafer LRRM Cal.



Standard Off Wafer OSLT

|      | Open & Short Pad Cap Extraction |             |
|------|---------------------------------|-------------|
|      |                                 |             |
| Open |                                 | Short Short |
|      |                                 |             |
|      |                                 |             |
|      |                                 |             |
|      |                                 |             |

# THz Bipolar Transistors



V. Jain

E. Lobisser





#### 2008 UCSB Dry-Etched Ti/TiW Emitter Process

