A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs

Mark. Rodwell, University of California, Santa Barbara

A. D. Carter, G. J. Burek, M. A. Wistey^{*}, B. J. Thibeault, A. Baraskar, U. Singisetti, J. Cagnon, S. Stemmer, A. C. Gossard, C. Palmstrøm University of California, Santa Barbara *Now at Notre Dame

B. Shin, E. Kim, P. C. McIntyre Stanford University

Y.-J. Lee Intel

B. Yue, L. Wang, P. Asbeck, Y. Taur University of California, San Diego

III-V MOS: What is needed **?**

True MOS device structures at ~10 nm gate lengths

10nm gate length, < 10nm electrode spacings, < 10nm contact widths < 3 nm channel, < 1 nm gate-channel separation, < 3nm deep junctions Fully self-aligned processes: N+ S/D, S/D contacts

Drive currents >> 1 mA/micron @ 1/2-Volt V_{dd}.

Low access resistances.

Density-of-states limits.

Dielectrics: < 0.6 nm EOT, D_{it} < $10^{12}/cm^2$ -eV

impacts I_{on}, I_{off}, ... Low dielectric D_{it} must survive FET process.

...and the channel must be grown on Silicon

FETs

FET Scaling Laws

Changes required to double device / circuit bandwidth.

laws in constant-voltage limit:

FET parameter	change
gate length	decrease 2:1
current density (mA/µm), g _m (mS/µm)	increase 2:1
channel 2DEG electron density	increase 2:1
electron mass in transport direction	constant
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

(gate width W_G)

Current densities should double Charge densities must double

Semiconductor Capacitances Must Also Scale

Calculating Current: Ballistic Limit

Do we get highest current with high or low mass ?

Drive Current Versus Mass, # Valleys, and EOT

Standard InGaAs MOSFETs have superior I_d to Si at large EOT. Standard InGaAs MOSFETs have <u>inferior</u> I_d to Si at <u>small</u> EOT.

Transit Delay versus Effective Mass

Low m^* gives lowest transit time, lowest C_{as} at <u>any</u> EOT.

III-V MOSFETs for VLSI: Why and Why Not.

Lower mass → Higher Carrier Velocity→ lower input capacitance improved gate delay in transistor-capacitance-limited gates not relevant in wiring-capacitance-limited gates (i.e. most of VLSI)

More importantly: <u>potential</u> for higher drive current improved gate delay in wiring-capacitance-limited gates (VLSI)

But this advantage is widely misunderstood in community InGaAs channels— higher I_d/W_g than Si only for thick dielectricsLOWER I_d/W_g than Si for thin dielectrics break-even point is at ~0.5 nm EOT

We will introduce (DRC2010) candidate III-V channel designs providing higher I_d/W_g than Si even for small EOT

Contacts: Low Resistivity, High Current Density

substrate

For <10% impact on drive current, $I_D R_S / (V_{DD} - V_{th}) < 0.1$

Target $I_D / W_g \sim 1.5 \text{ mA}/\mu\text{m} @ (V_{DD} - V_{th}) = 0.3 \text{ V}$ $\rightarrow R_s W_g < 20 \Omega - \mu\text{m}$

10 nm wide contact $\rightarrow \rho_c < 0.2 \,\Omega - \mu m^2(!)$

current density in contact = $150 \text{ mA}/\mu\text{m}^2 \rightarrow \text{refractory contacts}$

FET: Key Regions, Key Challenges

Highly Scaled FET Process Flows

Scalable nm III-V MOSFET: what is needed

True <u>MOS</u> device structures at ~10 nm gate lengths 10 nm gate length, < 10nm electrode spacings, < 10nm contact widths < 3 nm channel, < 1 nm gate-channel separation, < w nm deep junctions Fully self-aligned processes: N+ S/D, S/D contacts

InGaAs MOSFET with N+ Source/Drain by MEE Regrowth¹

Self-aligned source/drain defined by MBE regrowth²

Self-aligned in-situ Mo contacts³

Process flow & dimensions selected for 10-30 nm L_g design;

¹Singisetti, ISCS 2008 ²Wistey, EMC 2008 ³Baraskar, EMC 2009

Regrown S/D process: key features

Self-aligned <u>& low resistivity</u> ...source / drain N+ regions ...source / drain metal contacts

Vertical S/D doping profile set by MBE no n+ junction extension below channel abrupt on few-nm scale

Gate-first

gate dielectric formed after MBE growth uncontaminated / undamaged surface

Process flow*

* Singisetti et al, 2008 ISCS, September, Frieburg Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009

Key challenge in S/D process: gate stack etch

Requirement: avoid damaging semiconductor surface:

Approach: Gate stack with multiple selective etches*

Process scalable to ~10 nm gate lengths

* Singisetti et al; Physica Status Solidi C, vol. 6, pp. 1394,2009

Challenge in S/D process: dielectric sidewall

n_s under sidewall: electrostatic spillover from source, gate

Sidewall must be kept thin: avoid carrier depletion, avoid source starvation

$\textbf{MBE Regrowth} {\rightarrow} \textbf{Gap Near Gate} {\rightarrow} \textbf{Source Resistance}$

- Shadowing by gate: No regrowth next to gate
- Gap region is depleted of electrons

High source resistance because of electron depletion in the gap

Migration Enhanced Epitaxial (MEE) S/D Regrowth*

High temperature migration enhanced epitaxial regrowth

*Wistey, EMC 2008 Wistey, ICMBE 2008

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

Regrown S/D III-V MOSFET: Images

Cross-section after regrowth,

but before Mo deposition

Top view of completed device

Source Resistance: electron depletion near gate

- Electron depletion in regrowth shadow region (R_1)
- Electron depletion in the channel under SiN_x sidewalls (R_2)

Regrowth profile dependence on As flux*

multiple InGaAs regrowths with InAIAs marker layers

Uniform filling with lower As flux

* Wistey *et al*, EMC 2009 Wistey *et al* NAMBE 2009

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

InAs source/drain regrowth

Improved InAs regrowth with low As flux for uniform filling¹ InAs less susceptible to electron depletion: Fermi pinning above E_c^2

¹ Wistey et al, EMC 2009
Wistey et al NAMBE 2009.
²Bhargava et al , APL 1997

In-<u>Situ Refractory Ohmics on MBE Regrown N-InGaAs</u>

Benefits of refractory contacts

After 250°C anneal, Pd/Ti/Pd/Au *diffuses* 15nm into semiconductor deposited Pd thickness: 2.5nm

Refractory Mo contacts do not diffuse measurably

Refractory, non-diffusive metal contacts for thin semiconductor layers

Resistivity of MEE Regrowth

15 μm TLM width

~50 nm InAs regrowth has ~22 Ω sheet resistivity Contact resistivity is ~1.2 Ω - μ m².

Self-Aligned Contacts: Height Selective Etching*

* Burek et al, J. Cryst. Growth 2009

Fully Self-Aligned III-V MOSFET Process

Subthreshold characteristics

10-30 nm Process Development

<u>Excellent structural yield in</u> <u>sub-100nm process flow</u>

27 nm Self-Aligned InGaAs MOSFET

100 nm

Self-aligned N+ S/D regrowth shallow , high doping , low sheet ρ

Self-aligned Mo in-situ S/D contacts: low ρ , refractory \rightarrow shallow

HAADF TEM

STEM is chemical contrast imaging -> Is the regrowth sinking?

Conclusion

III-V MOS

With appropriate design, III-V channels can provide > current than Si ...even for highly scaled devices

But present III-V device structures are also unsuitable for 10 nm MOS large access regions, low current densities, deep junctions

Raised S/D regrowth process is a path towards a nm VLSI III-V device

(end)