III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes

Mark. Rodwell, University of California, Santa Barbara

A. D. Carter, G. J. Burek, <u>M. A. Wistey</u>*, B. J. Thibeault, A. Baraskar, U. Singisetti, J. Cagnon, S. Stemmer, A. C. Gossard, C. Palmstrøm University of California, Santa Barbara *Now at Notre Dame

B. Shin, E. Kim, P. C. McIntyre Stanford University

Y.-J. Lee Intel

B. Yue, L. Wang, P. Asbeck, Y. Taur University of California, San Diego

III-V MOSFETs for VLSI: Why and Why Not.

Lower mass → Higher Carrier Velocity→ lower input capacitance improved gate delay in transistor-capacitance-limited gates not relevant in wiring-capacitance-limited gates (i.e. most of VLSI)

More importantly: <u>potential</u> for higher drive current improved gate delay in wiring-capacitance-limited gates (VLSI)

But this advantage is widely misunderstood in community InGaAs channels— higher I_d/W_g than Si only for thick dielectricsLOWER I_d/W_g than Si for thin dielectrics break-even point is at ~0.5 nm EOT

We will introduce later candidate III-V channel designs providing higher I_d / W_g than Si even for small EOT

III-V MOS: What is needed **?**

True MOS device structures at ~10 nm gate lengths

10nm gate length, < 10nm electrode spacings, < 10nm contact widths < 3 nm channel, < 1 nm gate-channel separation, < 3nm deep junctions Fully self-aligned processes: N+ S/D, S/D contacts

Drive currents >> 1 mA/micron @ 1/2-Volt V_{dd}.

Low access resistances.

Density-of-states limits.

Dielectrics: < 0.6 nm EOT, D_{it} < $10^{12}/cm^2$ -eV

impacts I_{on}, I_{off}, ... Low dielectric D_{it} must survive FET process.

...and the channel must be grown on Silicon

Highly Scaled FET Process Flows

Requirements: 10 nm L_g III-V MOSFET

Self-aligned S/D contacts low resistance in ~10 nm width, < 0.5 Ω - μ m² resistivity needed.

Self-aligned N+ source/drain shallow, heavily-doped aligned within nm of gate

Thin oxide < 1 nm EOT _____ Thin channel < 5nm Shallow channel: no setbacks

InGaAs MOSFET with N+ Source/Drain by MEE Regrowth¹

Self-aligned source/drain defined by MBE regrowth²

Self-aligned in-situ Mo contacts³

Process flow & dimensions selected for 10-30 nm L_q design;

Gate-first

gate dielectric formed after MBE growth uncontaminated / undamaged surface

¹Singisetti, ISCS 2008 ²Wistey, EMC 2008 ³Baraskar, EMC 2009

Process flow*

* Singisetti et al, 2008 ISCS, September, Frieburg Singisetti et al, Physica Status Solidi C, vol. 6, pp. 1394,2009

Key challenge in S/D process: gate stack etch

Requirement: avoid damaging semiconductor surface:

Approach: Gate stack with multiple selective etches*

Process scalable to ~10 nm gate lengths

$\textbf{MBE Regrowth} {\rightarrow} \textbf{Gap Near Gate} {\rightarrow} \textbf{Source Resistance}$

- Shadowing by gate: No regrowth next to gate
- Gap region is depleted of electrons

High source resistance because of electron depletion in the gap

Migration Enhanced Epitaxial (MEE) S/D Regrowth*

High temperature migration enhanced epitaxial regrowth

*Wistey, EMC 2008 Wistey, ICMBE 2008

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

Regrowth profile dependence on As flux*

multiple InGaAs regrowths with InAIAs marker layers

Uniform filling with lower As flux

* Wistey *et al*, EMC 2009 Wistey *et al* NAMBE 2009

MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

InAs source/drain regrowth

Improved InAs regrowth with low As flux for uniform filling¹ InAs less susceptible to electron depletion: Fermi pinning above E_c^2

¹ Wistey *et al*, EMC 2009
Wistey *et al* NAMBE 2009.
²Bhargava *et al*, APL 1997

In-Situ Refractory Ohmics on MBE Regrown N-InGaAs

TEM by Dr. J. Cagnon, Stemmer Group, UCSB

Self-Aligned Contacts: Height Selective Etching*

* Burek et al, J. Cryst. Growth 2009

Fully Self-Aligned III-V MOSFET Process

Drive current and transconductance

0.95 mA/ μ m peak I_d , ~0.45 mS/ μ m peak g_m

27 nm Self-Aligned Process Flow

Self-aligned structures at ~10 nm gate length can be fabricated

MEE regrowth has very narrow process window→ CBE or MOCVD ?

100 nm	1	
	_	

III-V FET Scaling 8 **High-Current-Density** Channels

FET Scaling Laws

Changes required to double device / circuit bandwidth.

laws in constant-voltage limit:

FET parameter	change
gate length	decrease 2:1
current density (mA/µm), g _m (mS/µm)	increase 2:1
channel 2DEG electron density	increase 2:1
electron mass in transport direction	constant
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

(gate width W_G)

Current densities should double Charge densities must double

Semiconductor Capacitances Must Also Scale

Calculating Current: Ballistic Limit

Do we get highest current with high or low mass ?

Drive Current Versus Mass, # Valleys, and EOT

Standard InGaAs MOSFETs have superior I_d to Si at large EOT. Standard InGaAs MOSFETs have <u>inferior</u> I_d to Si at <u>small EOT</u>. Solomon / Laux Density-of-States-Blottleneck \rightarrow <u>III-V loses to Si.</u>

III-V Band Properties, normal {100} Wafer

L - valley transverse masses are comparable to Γ valleys

Consider Instead: Valleys in {111} Wafer

Orientation : one L valley has high vertical mass

X valleys & three L valleys have moderate vertical mass

Valley in {111} Wafer: with Quantization in thin wells

Selects L[111] valley; low transverse mass

{111} $\Gamma\text{-L}$ FET: Candidate Channel Materials

	Γ valley	L valley			Well thickness for
material	m^* / m_o	m_l / m_o	m_t / m_o	$E_L - E_{\Gamma}$	$\Gamma - L$ alignment
In _{0.5} Ga _{0.5} As	0.045	1.23	0.062	0.47 eV	1 nm (?)
GaAs	0.067	1.90	0.075	0.28 eV	2 nm
GaSb	0.039	1.30	0.10	0.07 eV	4 nm

Standard Approach Γ valleys in [100] orientation

3 nm GaAs well AISb barriers

Relative Energies: $\Gamma=0 \text{ eV}$ L=177 meV X[100]= 264 meV X[010] = 337 meV

First Approach: Use both $\,\Gamma$ and L valleys in [111]

2.3 nm GaAs wellAISb barriers[111] orientation

Relative Energies: Γ= 41 meV L[111] (1)= 0 meV L[111] (2)= 84 meV

L[11-1] =175 meV X=288 meV

Combined Γ -L wells in {111} orientation vs. Si

GaAs MOSFET with combined Γ and L transport, 2 nm well \rightarrow g=2, m*/m₀=0.07 GaSb MOSFET with combined Γ and L transport, ~4 nm well $\rightarrow m_{\Gamma}^*/m_0=0.039$, $m_L^*/m_0=0.1$

2nd Approach: Use L valleys in Stacked Wells

Three 0.66 nm GaAs wells 0.66 nm AISb barriers [111] orientation

Relative Energies: Γ =338 meV L[111](1) = 0 meV L[111](2)= 61 meV L[111](3)= 99 meV L[11-1] =232 meV X=284 meV

Conclusion

III-V MOS

With appropriate design, III-V channels can provide > current than Si ...even for highly scaled devices

But present III-V device structures are also unsuitable for 10 nm MOS large access regions, low current densities, deep junctions

Raised S/D regrowth process is a path towards a nm VLSI III-V device

Gate dielectric still requires major progress...

(end)