We want the best transistor we can get!

We'd like 3 THz cutoff frequencies. We'd like 5 nm gate lengths We'd like 3 mA/ μ m & a 1/2-Volt supply

Making short gates is easy----it's not the problem we face.

Fundamental limits ... or things to be fixed ?

A good 0.1 nm gate dielectric is very hard to find

Make the best dielectric you can...

...then pick the channel for the most current you can get !

For 2D, being DOS-limited means a low-current design...

L Valleys let us greatly increase the state density

Pack 1-D FETs closely, or external parasitics will dominate

... but low transverse mass prevents close conductor spacing !

....so pick a <u>moderate</u> effective mass

Better still: use an anisotropic band.

Do CNTs beat an L-valley array ???

then CNTs are not the only imaginary device to pick from

It's silly to fix one problem at a time...

$$(1/2\pi f_{\tau}) = \tau_1 + \tau_2 + \tau_3 + \tau_4 = 50 + 50 + 50 + 50 = 200 \text{ fs}$$

$$(1/2\pi f_{\tau}) = \tau_1/10 + \tau_2 + \tau_3 + \tau_4 = 5 + 50 + 50 = 155 \text{ fs}$$

So we make scaling roadmaps:

Gate length	nm	50	35	25	18	13	9
Gate EOT	nm	1.17	0.83	0.58	0.41	0.29	0.21
well thickness	nm	8.0	5.7	4.0	2.8	2.0	1.4
S/D resistance	Ω–μm	210	148	105	74	53	37
# bands		1	1	1	2	3	3
effective mass	*m ₀	0.05	0.05	0.05	0.08	0.08	0.08
f_{τ}	GHz	490	700	773	1144	1608	2330
f _{max}	GHz	552	814	930	1391	1963	2883
f _{divider}	GHz	109	151	219	303	431	576
L.MV	ml/m	0 4 2	0.54	0 60	0.05	1 /	1 0

\rightarrow contacts & dielectrics are as important as the channel

1-D DOS-limited FETs sure ain't linear

pick your poison....or pick your nonlinearity...

2-D FET: in ballistic limit input capacitance is linear transconductance is nonlinear

When we want linearity, we use <u>bipolars</u> high gm→ linearize by external resistance fully depleted collectors for low capacitance variation but then velocity modulation gets us.

by the way...THz HBTs also see DOS limits

Highly degenerate limit

U

$$U = \frac{qm^* (E_f - E_c)^2}{2\pi^2 \hbar^3}$$
$$= \left(130 \frac{\text{mA}}{\mu \text{m}^2}\right) \left(\frac{E_f - E_c}{0.1 \text{ eV}}\right)^2$$

for InP emitter $(m^*/m_0 = 0.08)$.

Electron degeneracy contributes 1 Ω - μm^2 equivalent series resistance for InP emitter