III-V FET Channel Designs for High Current Densities and Thin Inversion Layers

Mark Rodwell University of California, Santa Barbara

Coauthors:

W. Frensley: University of Texas, Dallas

S. Steiger, S. Lee, Y. Tan, G. Hegde, G. Klimek Network for Computational Nanotechnology, Purdue University

E. Chagarov, L. Wang, P. Asbeck, A. Kummel, University of California, San Diego

T. Boykin University of Alabama, Huntsville

J. N. Schulman The Aerospace Corporation, El Segundo, CA.

Acknowledgements: Herb Kroemer (UCSB), Bobby Brar (Teledyne) Art Gossard (UCSB), John Albrecht (DARPA)

rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax

Thin, high current density III-V FET channels

InGaAs, InAs FETs THz & VLSI need <u>high current</u> low $m^* \rightarrow$ high velocities

FET scaling for speed requires <u>increased charge density</u> low $m^* \rightarrow low$ charge density

Density of states bottleneck (Solomon & Laux IEDM 2001) \rightarrow For < 0.6 nm EOT, silicon beats III-Vs

Open the bottle !

low transport mass \rightarrow high v_{carrier} multiple valleys or anistropic valleys \rightarrow high DOS Use the L valleys.

Simple FET Scaling

Goal: double transistor bandwidth when used in any circuit → reduce 2:1 all capacitances and all transport delays → keep constant all resistances, voltages, currents

To double speed, we must double (g_m/W_g) , (I_D/W_g) , (C_{gs}/L_gW_g) , n_s .

FET Scaling Laws

Changes required to double device / circuit bandwidth.

laws in constant-voltage limit:

FET parameter	change
gate length	decrease 2:1
current density (mA/ μ m), g _m (mS/ μ m)	increase 2:1
channel 2DEG electron density	increase 2:1
electron mass in transport direction	constant
gate-channel capacitance density	increase 2:1
dielectric equivalent thickness	decrease 2:1
channel thickness	decrease 2:1
channel density of states	increase 2:1
source & drain contact resistivities	decrease 4:1

(gate width W_G)

Current densities should double Charge densities must double

Semiconductor Capacitances Must Also Scale

Calculating Current: Ballistic Limit

Natori

$$\Rightarrow J = \left(84 \frac{\text{mA}}{\mu \text{m}}\right) \frac{g \cdot (m^*/m_o)^{1/2}}{\left(1 + (c_{dos,o}/c_{ox}) \cdot g \cdot (m^*/m_o)\right)^{3/2}} \left(\frac{V_{gs} - V_{th}}{1 \text{ V}}\right)^{3/2}$$

Do we get highest current with high or low mass ?

Drive current versus mass, # valleys, and EOT

InGaAs MOSFETs: superior I_d to Si at large EOT. InGaAs MOSFETs: <u>inferior</u> I_d to Si at <u>small</u> EOT.

Solomon / Laux Density-of-States-Bottleneck \rightarrow <u>III-V loses to Si.</u>

Transit delay versus mass, # valleys, and EOT

Low m* gives lowest transit time, lowest C_{gs} at <u>any</u> EOT.

Low effective mass also impairs vertical scaling

Shallow electron distribution needed for high I_d , high g_m / G_{ds} ratio, low drain-induced barrier lowering.

Energy of Lth well state
$$\propto L^2 / m^* T_{well}^2$$
.

For thin wells,

only 1st state can be populated. For <u>very</u> thin wells,

1st state approaches L-valley.

Only one vertical state in well. Minimum ~ 3 nm well thickness. \rightarrow Hard to scale below 10-16 nm L_g.

III-V Band Properties, normal {100} Wafer

L - valley transverse masses are comparable to Γ valleys

Consider instead: valleys in {111} Wafer

Orientation: one L valley has high vertical mass

X valleys & three L valleys have moderate vertical mass

Valley in {111} wafer: with quantization in thin wells

Selects L[111] valley; low transverse mass

{111} Γ -L FET: Candidate Channel Materials

	Γ valley		L valley		Well thickness for
material	m^* / m_o	m_l / m_o	m_t / m_o	$E_L - E_{\Gamma}$	$\Gamma - L$ alignment
$In_{0.5}Ga_{0.5}As$	0.045	1.23	0.062	0.47 eV	1 nm (?)
GaAs	0.067	1.90	0.075	0.28 eV	2 nm
GaSb	0.039	1.30	0.10	0.07 eV	4 nm
Ge		1.58	0.08	(negative)	

Standard III-V FET: Γ valley in [100] orientation

3 nm GaAs well AISb barriers

Г=0 eV

L=177 meV X[100]= 264 meV X[010] = 337 meV

1st Approach: Use both Γ and L valleys in [111]

2.3 nm GaAs wellAISb barriers[111] orientation

Γ= 41 meV L[111] (1)= 0 meV L[111] (2)= 84 meV

L[111] , etc. =175 meV X=288 meV

Combined $\Gamma\text{-L}$ wells in {111} orientation $\,$ vs. Si

2 nm GaAs Γ/L well \rightarrow g =2, m*/m₀=0.07 4 nm GaSb Γ/L well \rightarrow m_{Γ}*/m₀=0.039, m_{L,t}*/m₀=0.1

2nd Approach: Use L valleys in Stacked Wells

Three 0.66 nm GaAs wells 0.66 nm AISb barriers [111] orientation

L[111](1) = 0 meV L[111](2)= 61 meV L[111](3)= 99 meV

Γ=338 meV L[111], etc =232 meV X=284 meV

Increase in C_{dos} with 2 and 3 wells

3 High Current Density (111) GaAs/AISb Designs

Nonparabolic bands reduce bound state energies

Failure of effective mass approximation:1-2 nm wells

1-2 monolayer fluctuations in growth \rightarrow scattering \rightarrow collapse in mobility

- Supervised by Profs. Gerhard Klimeck and Timothy Boykin
- Simulation software: OMEN3D by Hoon Ryu and Sunhee Lee
- TB parameters for AISb and GaSb: Ganesh Hegde and Yaohua Tan

Network for Computational Nanotechnology (NCN)

- AlSb-GaSb triple-QW
- QW extension ~1.2nm

- Non-primitive unit cell in lateral directions
- Therefore zone folding in E(k)

1-D FET array = 2-D FET with high transverse mass

Weak coupling \rightarrow narrow transverse-mode energy distribution \rightarrow high density of states

3rd Approach: High Current Density L-Valley MQW FINFETs

4th Approach: {110} Orientation \rightarrow Anisotropic Bands

L[111], L[11 $\overline{1}$]: moderate vertical mass \rightarrow valleys populate High in - plane mass perpendicular to transport \rightarrow high density of states Low in - plane mass parallel to transport \rightarrow high carrier velocity

L[1 $\overline{1}$ 1],[$\overline{1}$ 11]:low vertical mass \rightarrow depopulate High in - plane mass parallel to transport \rightarrow low carrier velocity

Challenge : only moderate energy separation between desired and undesired valleys.

Anisotropic bands, e.g. {110}

GaAs: $n = 2, m_t / m_o = 0.075, m_l / m_o = 1.9$ Ge: $n = 2, m_t / m_o = 0.081, m_l / m_o = 1.58$

THz FET scaling<mark>: with & without</mark> increased DOS

Gate length	nm	50	35	25	18	13	9
Gate barrier EOT	nm	1.2	0.83	0.58	0.41	0.29	0.21
well thickness	nm	8.0	5.7	4.0	2.8	2.0	1.4
S/D resistance	Ω – μ m	210	150	100	74	53	37
effective mass	*m ₀	0.05	0.05	0.05	0.08	0.08	0.08
# band minima							
canonical		1	1.4	2	2.8	4	5.7
fixed DOS		1	1	1	1	1	1
stepped #		1	1	1	2	3	3

Scaled FET performance: fixed vs. increasing DOS

Increased density of states needed for high drive current, fast logic @ 16, 11, 8 nm nodes

10 nm / 3 THz III-V FETs: Challenges & Solutions

(end)

Network for Computational Nanotechnology (NCN)

UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP

Bandstructure of the [111] AISb/GaSb triple-QW

Sebastian Steiger

Network for Computational Nanotechnology (NCN) Electrical and Computer Engineering <u>steiger@purdue.edu</u>

- Supervised by Profs. Gerhard Klimeck and Timothy Boykin
- Simulation software: OMEN3D by Hoon Ryu and Sunhee Lee
- TB parameters for AISb and GaSb: Ganesh Hegde and Yaohua Tan

MOSFET Scaling Laws

Constant - voltage / constant - velocity scaling laws :

Changes required for γ : 1 increased bandwidth in an arbitrary circuit

$ -L_{SD} - -L_g - L_g - L_g$	<u>→</u> ←	$-L_{SD} \rightarrow T_{ox} T_{well}$		
gate				
source	<u>_</u>	drain +		
				
parameter	law	parameter	law	
gate length L_s , source-drain contact lengths	γ^{-1}	gate-channel capacitance C_{g-ch}	γ^{-1}	
$L_{S/D}$ (nm)		$= [1/C_{ox} + 1/C_{semi} + 1/C_{DOS}]^{-1} (\text{fF})$		
gate width W_{g} (nm)	γ^{-1}	transconductance $g_m \sim C_{g-ch} v_{injection} / L_g (mS)$	γ^{0}	
equivalent oxide thickness $T_{eq} = T_{ox} \varepsilon_{SiO_2} / \varepsilon_{oxide}$	γ^{-1}	gate-source, gate-drain fringing capacitances		
(nm)		$C_{gs,f} \propto \mathcal{E}W_{g}$, $C_{gd} \propto \mathcal{E}W_{g}$ (fF)		
dielectric capacitance $C_{ox} = \varepsilon_{SiO_2} L_g W_g / T_{eq}$ (fF)		S/D access resistances R_s , $R_d(\Omega)$ γ		
	ľ	S/D contact resistivity R_s/W_g , R_d/W_g ($\Omega - \mu m$)	γ^{-1}	
inversion thickness $T_{inv} \sim T_{well} / 2$ (nm)	γ^{-1}	S/D contact resistivity $\rho_c (\Omega - \mu m^2)$	γ^{-2}	
semiconductor capacitance	γ^{-1}	⁻¹ drain current $I_d \sim g_m (V_{gs} - V_{th})$ (mA)		
$C_{semi} = \varepsilon_{semi} L_g W_g / T_{inv} (\text{fF})$				
DOS capacitance $C_{DOS} = q^2 n m^* L_g W_g / 2\pi \hbar^2$ (fF)	γ^{-1}	drain current density (mA/ μ m)	γ^{1}	
electron density n_s (cm ⁻²)	γ^{1}	temperature rise (one device, K)	$\sim W_g^{-1}$	

2.0 nm GaAs well, AIAs barriers, on {111} GaAs

2 nm well : Γ and L(l) minima both populated.

 $\Gamma: m^*/m_o = 0.067 \qquad \text{L(1):} \ m_{\text{lateral}}^* / m_o = 0.075 \\ \text{low } m^* \rightarrow \text{high carrier ve locity} \\ \text{two band minima} \rightarrow \text{doubles } c_{dos} \\ 2 \text{ nm well} \rightarrow \text{good electrostatics at} \sim 5-7 \text{ nm } L_{g}.$

GaSb well, AISb barriers, on {110} GaSb

