In-situ Ohmic Contacts to p-InGaAs

Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault, Arthur Gossard and Mark Rodwell

ECE and Materials Departments, University of California, Santa Barbara, CA

Mark Wistey

Electrical Engineering, University of Notre Dame, IN

Outline

Motivation

- Low resistance contacts for high speed HBTs
- Approach

Experimental details

- Contact formation
- Fabrication of Transmission Line Model structures

Results

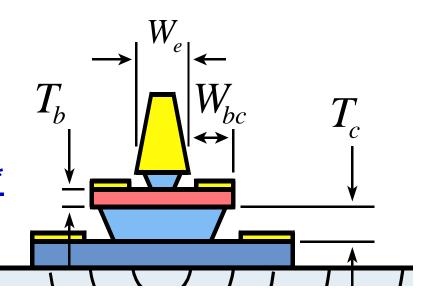
- Doping characteristics
- Effect of doping on contact resistivity
- Effect of annealing

Conclusion

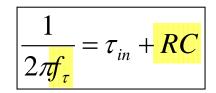
Outline

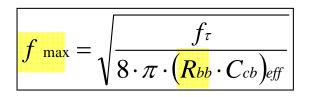
Motivation

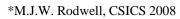
- Low resistance contacts for high speed HBTs
- Approach
- Experimental details
 - Contact formation
 - Fabrication of Transmission Line Model structures
- Results
 - Doping characteristics
 - Effect of doping on contact resistivity
 - Effect of annealing
- Conclusion



Device Bandwidth Scaling Laws for HBT


To double device bandwidth:


- Cut transit time 2x
- Cut RC delay 2x


Scale contact resistivities by 4:1*

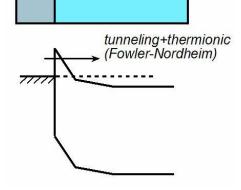
HBT: Heterojunction Bipolar Transistor

2010 Electronic Materials Conference

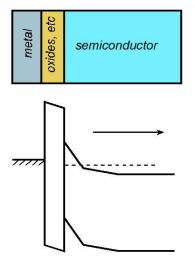
Ashish Baraskar

InP Bipolar Transistor Scaling Roadmap

	256	128	64	32	nm width
Emitter	8	4	2	1	Ω·µm ² access ρ
Base	175	120	60	30	nm contact width
	10	5	2.5	1.25	Ω·µm² contact ρ
Collector	106	75	53	37.5	nm thick
	9	18	36	72	mA/µm² current
	4	3.3	2.75	2-2.5	V breakdown
f _r	520	730	1000	1400	GHz
f _{max}	850	1300	2000	2800	GHz


Contact resistivity serious barrier to THz technology

Less than 2 Ω - μ m² contact resistivity required for simultaneous THz f_t and f_{max}^*


To achieve low resistance, stable ohmic contacts

- Higher number of active carriers
 - Reduced depletion width
 - Enhanced tunneling across metalsemiconductor interface
- Better surface preparation techniques
 - For efficient removal of oxides/impurities

semiconductor

metal

Approach (contd.)

- Scaled device → thin base (For 80 nm device: t_{base} < 25 nm)
- Non-refractory contacts may diffuse at higher temperatures through base and short the collector
- Pd/Ti/Pd/Au contacts diffuse about 15 nm in InGaAs on annealing

Outline

Motivation

- Low resistance contacts for high speed HBTs and FETs
- Approach

Experimental details

- Contact formation
- Fabrication of Transmission Line Model structures
- Results
 - Doping characteristics
 - Effect of doping on contact resistivity
 - Effect of annealing
- Conclusion

Epilayer Growth

Epilayer growth by Solid Source Molecular Beam Epitaxy (SS-MBE)– p-InGaAs/InAIAs

- Semi insulating InP (100) substrate
- Un-doped InAIAs buffer
- CBr₄ as carbon dopant source
- Hole concentration determined by Hall measurements

100 nm In_{0.53}Ga_{0.47}As: C (p-type)

100 nm $In_{0.52}AI_{0.48}As$: NID buffer

Semi-insulating InP Substrate

2010 Electronic Materials Conference

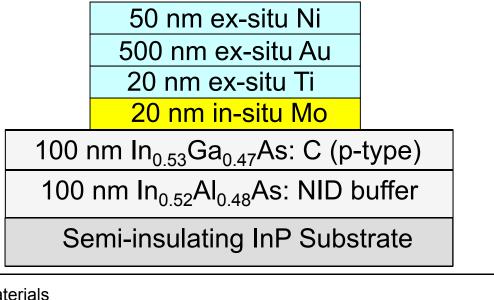
9

In-situ contacts

In-situ molybdenum (Mo) deposition

- E-beam chamber connected to MBE chamber
- No air exposure after film growth

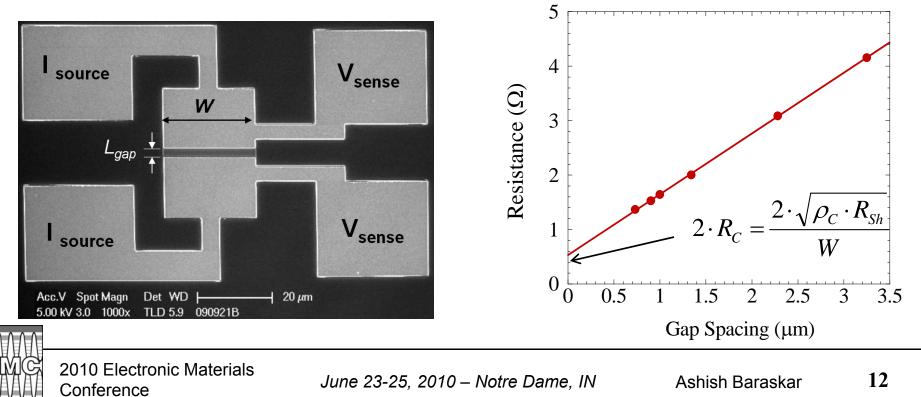
Why Mo?


- Refractory metal (melting point ~ 2620 °C)
- Easy to deposit by e-beam technique
- Easy to process and integrate in HBT process flow

20 nm <i>in-situ</i> Mo
100 nm In _{0.53} Ga _{0.47} As: C (p-type)
100 nm In _{0.52} Al _{0.48} As: NID buffer
Semi-insulating InP Substrate

TLM (Transmission Line Model) fabrication

- E-beam deposition of Ti, Au and Ni layers
- Samples processed into TLM structures by photolithography and liftoff
- Contact metal was dry etched in SF₆/Ar with Ni as etch mask, isolated by wet etch



11

Resistance Measurement

- Resistance measured by Agilent 4155C semiconductor parameter analyzer
- TLM pad spacing (L_{gap}) varied from 0.5-26 μm ; verified from scanning electron microscope (SEM)
- TLM Width ~ 25 μm

Error Analysis

3.5

2.5

2

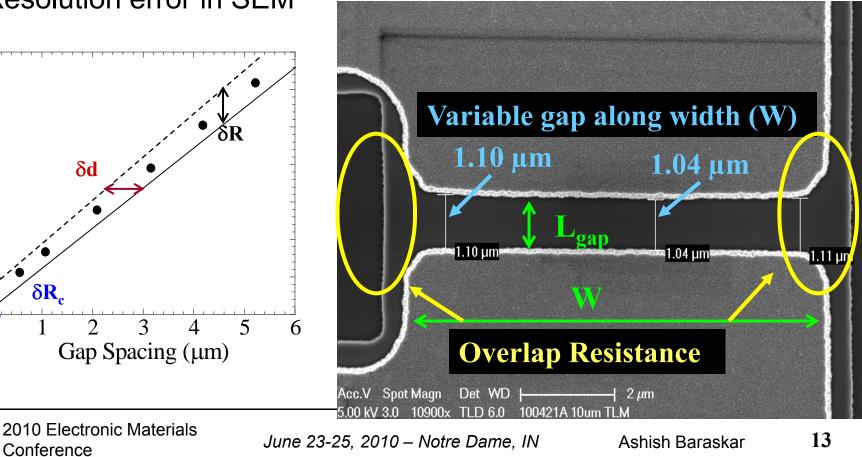
1.5

1

0.5

0

Resistance (Ω)


3

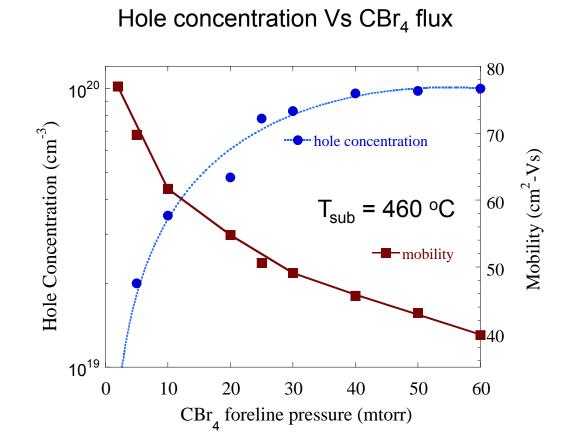
Extrapolation errors:

- 4-point probe resistance measurements on Agilent 4155C
- Resolution error in SEM

• Processing errors:

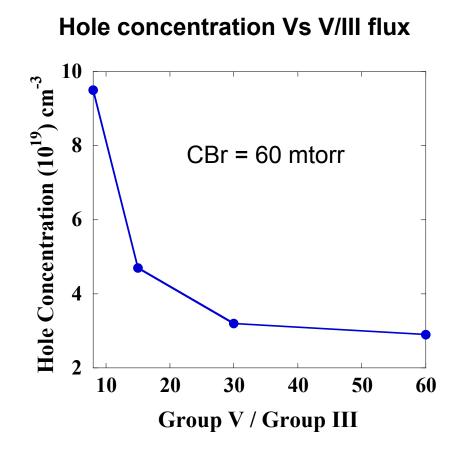
- Variable gap spacing along width (W)
- Overlap resistance

Outline


- Motivation
 - Low resistance contacts for high speed HBTs and FETs
 - Approach
- Experimental details
 - Contact formation
 - Fabrication of Transmission Line Model structures

Results

- Doping characteristics
- Effect of doping on contact resistivity
- Effect of annealing
- Conclusion

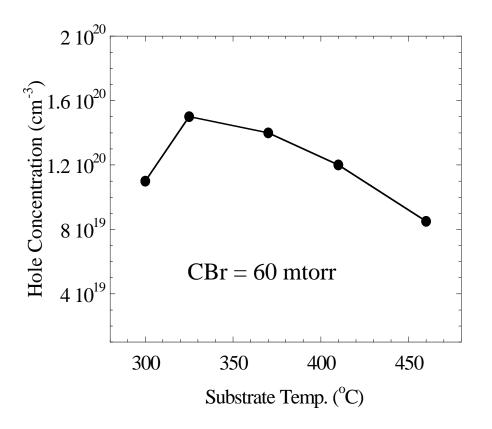

Doping Characteristics-I

- Hole concentration saturates at high CBr fluxes
- Number of di-carbon defects † as CBr flux †

15

As V/III ratio ↓ hole concentration↑

hypothesis: As-deficient surface drives C onto group-V sites



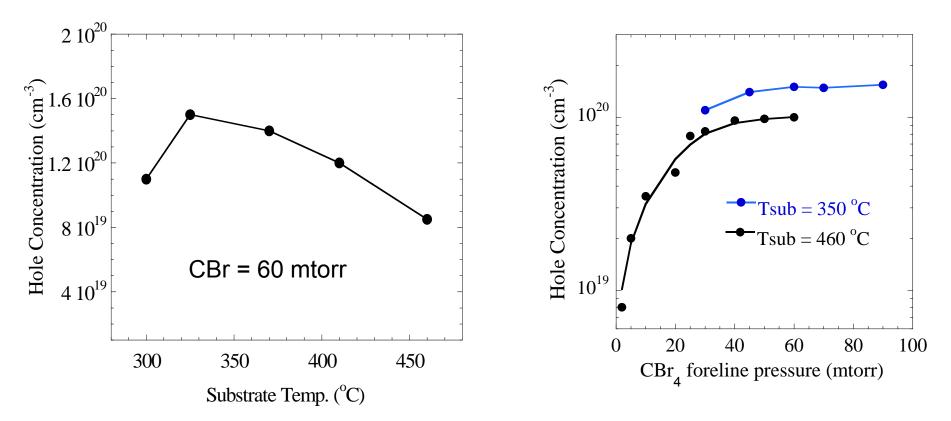
2010 Electronic Materials Conference

16

Doping Characteristics-III

Hole concentration Vs substrate temperature

Tendency to form di-carbon defects \$\frac{1}{as}\$ Tsub \$\frac{1}{*}\$



2010 Electronic Materials Conference

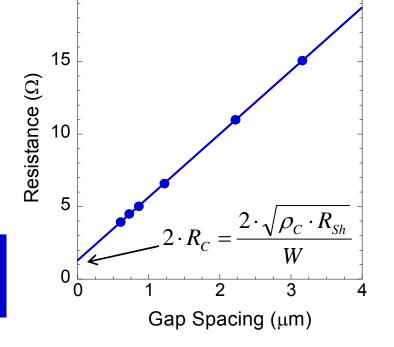
*Tan et. al. Phys. Rev. B 67 (2003) 035208

Ashish Baraskar

Hole concentration Vs substrate temperature

Tendency to form di-carbon defects tas Tsub t*

2010 Electronic Materials Conference


Ashish Baraskar

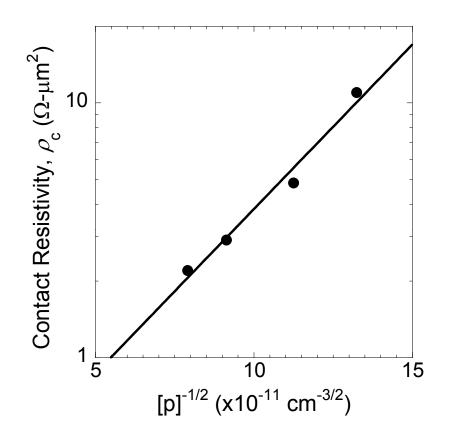
Results: Contact Resistivity - I

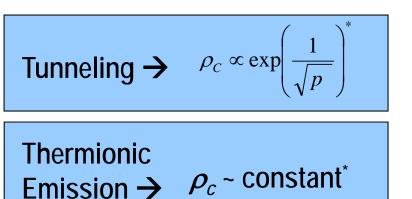
Metal Contact	$ ho_c$ (Ω-μm ²)	$ ρ_h (Ω-μm) $
In-situ Mo	2.2 ± 0.8	15.4 ± 2.6

20

- Hole concentration, $p = 1.6 \times 10^{20} \text{ cm}^{-3}$
- Mobility, $\mu = 36 \text{ cm}^2/\text{Vs}$
- Sheet resistance, R_{sh} = 105 ohm/ (100 nm thick film)

 $ρ_c$ lower than the best reported contacts to pInGaAs ($ρ_c = 4 \ \Omega - \mu m^2$)^[1,2]


Griffith *et al*, Indium Phosphide and Related Materials, 2005.
 Jain *et al*, IEEE Device Research Conference, 2010.



2010 Electronic Materials Conference

June 23-25, 2010 – Notre Dame, IN

Results: Contact Resistivity - II

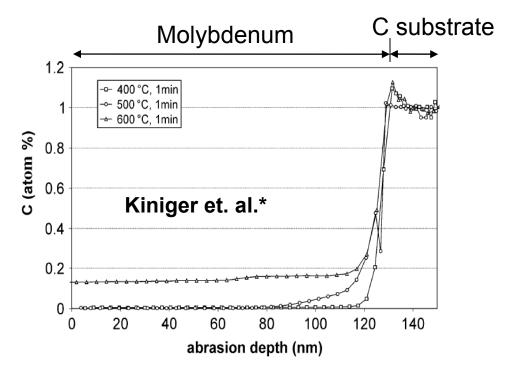
Data suggests tunneling

High active carrier concentration is the key to low resistance contacts

2010 Electronic Materials Conference

June 23-25, 2010 – Notre Dame, IN

* Physics of Semiconductor Devices, S M Sze


Thermal Stability - I

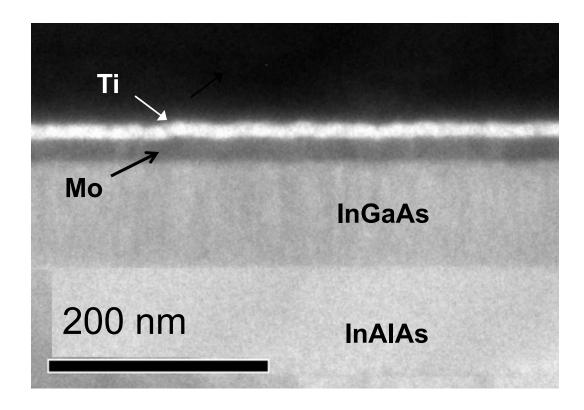

Mo contacts annealed under N₂ flow for 60 mins. at 250 °C

	Before annealing	After annealing
ρ _c (Ω-μm²)	2.2 ± 0.8	2.8 ± 0.9

- ρ_c increases on annealing
- Mo reacts with residual

interfacial carbon?*

2010 Electronic Materials Conference


June 23-25, 2010 – Notre Dame, IN

Thermal Stability - II

Mo contacts annealed under N_2 flow for 60 mins. at 250 °C

TEM of Mo-pInGaAs interface

- Suggests sharp interface
- Minimal/No intermixing

2010 Electronic Materials Conference

Summary

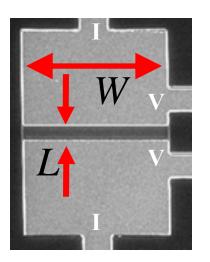
- Maximum hole concentration obtained = 1.6 x10²⁰ cm⁻³ at a substrate temperature of 350 °C
- Low contact resistivity with *in-situ* metal contacts (lowest ρ_c=2.2 ± 0.8 Ω-μm²)

✓ Contacts suitable for THz transistors

Thank You !

Questions?

Acknowledgements ONR, DARPA-TFAST, DARPA-FLARE


2010 Electronic Materials Conference

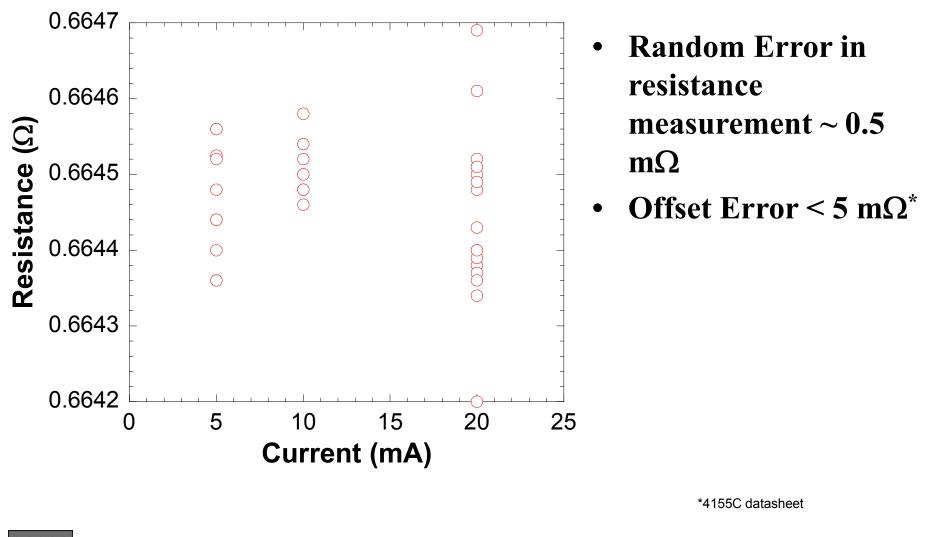
June 23-25, 2010 – Notre Dame, IN

Extra Slides

Correction for Metal Resistance in 4-Point Test Structure

$$(\rho_{sheet}\rho_{contact})^{1/2}/W + \rho_{sheet}L/W + R_{metal}/x$$

Error term (R_{metal}/x) from metal resistance



2010 Electronic Materials Conference

June 23-25, 2010 – Notre Dame, IN

26

Random and Offset Error in 4155C

2010 Electronic Materials Conference

Accuracy Limits

- Error Calculations
 - $dR = 50 m\Omega$ (Safe estimate)
 - $dW = 1 \mu m$
 - dGap = 20 nm
- Error in $\rho_c \sim 40\%$ at 1.1 Ω - μm^2

