

High performance 110 nm InGaAs/InP DHBTs in dry-etched *in-situ* refractory emitter contact technology

Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell

ECE Department, University of California, Santa Barbara, CA 93106-9560

Zach Griffith, Miguel Urteaga Teledyne Scientific & Imaging, Thousand Oaks, CA 91360

Sebastian T Bartsch

Nanoelectronics Device Laboratory, EPFL, Switzerland

D Loubychev, A Snyder, Y Wu, J M Fastenau, W K Liu IQE Inc., 119 Technology Drive, Bethlehem, PA 18015

vibhor@ece.ucsb.edu, 805-893-3273

Outline

- HBT Scaling Laws
- Fabrication
 - Challenges
 - Process Development
- DHBT Epitaxial Design
- Results
 - DC & RF Measurements
- Summary

Bipolar transistor scaling laws

$$\boxed{\frac{1}{2\pi f_{\tau}} = \tau_{tr} + RC} \quad f_{max} = \sqrt{\frac{f_{\tau}}{8\pi R_{bb,eff}}C_{cb,eff}}}$$

To *double cutoff frequencies* of a mesa HBT, must:

Keep constant all resistances and currents Reduce all capacitances and transit delays by 2

(emitter length L_e)

InP Bipolar transistor scaling roadmap

		256	128	64	32	Width (nm)
ormance Design	Emitter	8	4	2	1	Access ρ (Ω·μm²)
	Base	175	120	60	30	Contact width (nm)
		10	5	2.5	1.25	Contact <i>ρ</i> (Ω·μm²)
	Collector	106	75	53	37.5	Thickness (nm)
	Current density	9	18	36	72	mA/μm²
	Breakdown voltage	4	3.3	2.75	2-2.5	V
	f_{τ}	520	730	1000	1400	GHz
Perf	f _{max}	850	1300	2000	2800	GHz

Sub-200 nm HBT node: Fabrication Challenges - I

Emitter yield drops during base contact, subsequent lift-off steps

Sub-200 nm HBT node: Fabrication Challenges - II

Narrow emitters need controlled semiconductor undercut

→Thin semiconductor

To prevent short, base metal needs to be thinned

→ Higher base metal resistance

Solution: Undercut in the emitter metal to act as a shadow mask

Composite Emitter Metal Stack

- W/Ti_{0.1}W_{0.9} metal stack
- Low stress
- Refractory metal emitters
- Vertical dry etch profile

Junction Width via SEM, TEM

In-situ Emitter Contact

- Highly doped n-InGaAs regrown on IQE InGaAs and in-situ Mo deposited
 - Active carriers ~ 5×10¹⁹ cm⁻³
- In-situ Mo deposition on n-InGaAs $\rho_c \sim 1.1 \ \Omega. \mu m^2 *$
- In-situ deposition \rightarrow repeatable contact resistivity

[•] A. Baraskar et al., J. Vac. Sci. Tech. B, 27, 4, 2009

Process flow

W/TiW interface acts as shadow mask for base lift off
Base and collector formed via lift off and wet etch
BCB used to passivate and planarize devices

Self-aligned process flow for 110 nm DHBT

Epitaxial Design

T(nm)	Material	Doping (cm ⁻³)	Description
10	In _{0.53} Ga _{0.47} As	5·10 ¹⁹ : Si	Regrown Cap
10	In _{0.53} Ga _{0.47} As	5·10 ¹⁹ : Si	Emitter Cap
10	InP	4·10 ¹⁹ : Si	Emitter
10	InP	1·10 ¹⁸ : Si	Emitter
30	InP	8·10¹ ⁷ : Si	Emitter
25	In _{0.53} Ga _{0.47} As	7-4⋅10 ¹⁹ : C	Base
7.5	In _{0.53} Ga _{0.47} As	9·10 ¹⁶ : Si	Setback
15	InGaAs / InAlAs	9·10 ¹⁶ : Si	B-C Grade
3	InP	5 ⋅10 ¹⁸ : Si	Pulse doping
74.5	InP	9·10 ¹⁶ : Si	Collector
7.5	InP	1⋅10 ¹⁹ : Si	Sub Collector
7.5	In _{0.53} Ga _{0.47} As	2·10 ¹⁹ : Si	Sub Collector
300	InP	2·10 ¹⁹ : Si	Sub Collector
Substrate	SI : InP		

Thin emitter semiconductor

- \rightarrow Enables wet etching
- High collector doping
 - \rightarrow High Kirk threshold

Results - DC Measurements

Results - RF Measurements using Off-Wafer LRRM

1-67 GHz RF Data and Extrapolated Cutoff Frequencies

Single-pole fit to obtain cut-off frequencies

Parameter Extraction

Equivalent Circuit

Microstrip Style TRL Calibration

140-180GHz RF data

-20dB/decade fit to obtain cut-off frequencies

Conclusion

- Demonstrated smallest junction width for a III-V DHBT (110 nm)
- Peak *f_t/f_{max}* = 465/660 GHz
 - $J_e = 23.6 \text{ mA}/\mu \text{m}^2$
 - Power Density (P) = 41 mW/ μ m²
- High current and power density operation (P > 50 mW/ μ m²)

Thank You

Questions?

This work was supported by the DARPA THETA program under HR0011-09-C-0060 and DARPA TFAST under N66001-02-C-8080. A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415