100-1000 GHz Bipolar ICs: Device and Circuit Design Principles

Mark Rodwell, UCSB Munkyo Seo, Teledyne Scientific

Collaborators:

Teledyne HBT Team: M. Urteaga, R. Pierson, P. Rowell, B. Brar, Teledyne Scientific Company

Teledyne IC Design Team: J. Hacker, Z. Griffith, A. Young, M. J. Choe, Teledyne Scientific Company

UCSB HBT Team: V. Jain, E. Lobisser, A. Baraskar, J. Rode, H.W. Chiang, A. C. Gossard , B. J. Thibeault, W. Mitchell

UCSB IC Design Team: S. Danesgar, T. Reed, Eli Bloch, H-C Park, J-H Kim

Motivation / Overview

DC to Daylight. Far-Infrared Electronics

How high in frequency can we push electronics ?

THz Transistors: Not Only For THz Circuits

Frequency, Hz

ICs to 600 GHz : Teledyne and UCSB

570 GHz fundamental VCO M. Seo, TSC CSIC 2010

430 GHz Iow-noise amplifier M. Seo, TSC other ICs by J. Hacker

204 GHz static frequency divider (ECL master-slave latch)

Z. Griffith, TSC CSIC 2010

340 GHz dynamic frequency divider M. Seo, TSC IEEE MWCL 2010

Active Loop filter

Dynamic

Frequency

divider

300 GHz fundamental PLL

M. Seo, TSC IMS 2011

40 GHz op-amp with 54 dBm IP3 at 2 GHz Z. Griffith, TSC IMS 2011

Phase

detector

REF

Clock

220 GHz 48 mW power amplifier

T. Reed, UCSB CSIC 2011

Other ICs in design: 30-40 GS/s track/hold optical PLLs coherent optical receivers 340 GHz arrays

VCO

output

vco

Mark Rosker

At High Frequencies The Atmosphere Is Opaque

THz Bipolar Transistors: Where Next ?

32 nm / 3 THz node, beyond

Transition to production

 $R\&D \rightarrow pilot \rightarrow foundry$ design tools, reliability, scaled interconnects CMOS control integration: 3-D, flip chip

Bipolar Transistors: Models, Scaling Laws, State of Art, Roadmaps

Bipolar Transistor: Structure & Models

Base-Collector Distributed RC Parasitics

$$R_{ex} = \rho_{contact,emitter} / A_{emitter}$$

$$R_{spread} = \rho_s W_e / 12L_E$$

$$R_{gap} = \rho_s W_{gap} / 4L_E$$

$$R_{spread,contact} = \rho_s W_{bc} / 6L_E$$

$$R_{contact} = \rho_{contact,base} / A_{base_contacts}$$

$$C_{cb,e} = \epsilon A_{emitter} / T_c$$

$$C_{cb,gap} = \epsilon A_{gap} / T_c$$

$$C_{cb,contact} = \epsilon A_{base_contacts} / T_c$$

 R_{ex}

 $C_{cb,e}$

$\textbf{R}_{\text{bb}}\textbf{C}_{\text{cb}}$ Time Constant, \textbf{F}_{max} , Simple Hybrid- π model

Key 2nd-Order Effects in III-V HBTs: Omitted for Brevity

Current - induced velocity overshoot : decreases τ_c

Nakajima, Japanese Journal of Applied Physics, Feb. 1997

Voltage modulation of collector velocity: increases τ_c

Partial C_{cb} cancellation by collector velocity modulation.

Betser and Ritter , IEEE Trans. Elect. Dev., April 1999 Urteaga & Rodwell, IEEE Trans. Elect. Dev., July 2003

Degenerate electron injection into base: increases R_{ex}

More detailed information regarding III-V bipolar transistor physics and design: http://www.ece.ucsb.edu/Faculty/rodwell/publications_and_presentations/publications/2009_may_IPRM_short_course_rodwell.pdf Space Charge, Kirk Effect, Minimum C_{cb} charging time

Collector capacitance charging time minimized by setting $J = J_{max}$...if so, charging time scales linearly with collector thickness.

Space-Charge-Limited Current (Kirk effect) in BJTs

Decreased $(f_{\tau}, f_{\text{max}})$, increased C_{cb} at high J. Kirk threshold increases with increased V_{ce} .

Increase in $V_{ce,sat}$ with increased J $\frac{dV_{ce}}{dI_c} = R_{\text{space-charge}} = \frac{T_c^2}{2\varepsilon v_{sat} A_{effective}}$ where the effective collector current flux area is $A_{effective} \approx L_E (W_E + 2T_C)$ $A_{jbe} = 0.6 \times 4.3 \ \mu m^2$ $V_{\perp} = 0 V$ 16 = 180 uA 40 b step 14 35 12 J_e (mA/μm²) 9 8 0 7 30 Peak f_t, f_{max} 25 ° (mA 20 15 4 10 2 5 0 0 0.5 2.5 1.5 2 0 $V_{ce}(V)$

$$\Delta T \propto \frac{P}{L_E} \left[1 + \ln \left(\frac{L_e}{W_e} \right) \right]$$

$$R_{ex} = \rho_{\text{contact}} / A_e$$
$$R_{bb} = \rho_{\text{sheet}} \left(\frac{W_e}{12L_e} + \frac{W_{bc}}{6L_e} \right) + \frac{\rho_{\text{contact}}}{A_{\text{contacts}}}$$

Breakdown is Never Less Than The Bandgap

Bipolar Transistors: Scaling Laws, Scaling Roadmap

scaling laws: to double bandwidth

HBT parameter	change
emitter & collector junction widths	decrease 4:1
current density (mA/µm ²)	increase 4:1
current density (mA/µm)	constant
collector depletion thickness	decrease 2:1
base thickness	decrease 1.4:1
emitter & base contact resistivities	decrease 4:1

(emitter length L_E)

InP HBT scaling roadmap

		•	-		
emitter	512	256	128	64	32 nm width
	16	8	4	2	<mark>1 Ω·μ</mark> m² access ρ
haaa	200	175	120	60	20 pm contact width
Dase	300	175	120	00	SU HITI CONTACT WIGHT,
	20	10	5	2.5	1.25 Ω·μm² contact ρ
collecto	r 150	106	75	53	37.5 nm thick,
	4.5	9	18	36	72 mA/ μ m ² current dens
	49	4	33	2 75	2-2.5 V breakdown
	1.0		0.0	2.10	
f	270	520	720	1000	
ι _τ	570	520	750	1000	1400 GHZ
f _{max}	490	850	1300	2000	2800 GHz
power amplifiers	245	430	660	1000	1400 GHz
digital 2.1 divider	150	240	330	480	660 GHz
	100	2.10	000	100	

Recent InP HBT Results: Urteaga et al, DRC 2011

Fig. 2 Common-emitter IV characteristics of 130nm HBT normalized to emitter area

130nm InP DHBTs with $f_t > 0.52$ THz and $f_{max} > 1.1$ THz M. Urteaga¹, R. Pierson¹, P. Rowell¹, V. Jain², E. Lobisser², M.J.W. Rodwell²

¹Teledyne Scientific Company, Thousand Oaks, CA 93160. ²Department of ECE, University of California, Santa Barbara, CA 93106. E-mail: murteaga@teledyne-si.com

Fig. 4 f_t and f_{max} versus collector current at varying values of VCE for 0.13x2µm² HBT

Recent InP HBT Results: Jain et al, DRC 2011

30nm emitter, 30nm base, 100nm collector

$P = 20 \text{ mW}/\mu\text{m}^2$ 30 $30 \text{ mW/}\mu\text{m}^2$ 25 = 0.22 x 2.7 μ m² (20 15 10 10 = 200 μA b.step 5 BV 0 0 2 3 4 5 1 ce

1.0 THz f_{max} InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance

Vibhor Jain¹, Johann C. Rode¹, Han-Wei Chiang¹, Ashish Baraskar¹, Evan Lobisser¹, Brian J. Thibeault¹, Mark Rodwell¹, Miguel Urteaga², D. Loubychev³, A. Snyder³, Y. Wu³, J. M. Fastenau³, W.K. Liu³ ¹ECE Department, University of California, Santa Barbara, CA 93106-9560 Phone: 805-893-3273, Fax: 805-893-3262, Email: vibhor@ece.ucsb.edu

Can we make a 1 THz SiGe Bipolar Transistor ?

Simple physics clearly drives scaling transit times, C _{cb} /I _c	<u>emitter</u>	InP 64 2	SiGe 18 0.6	nm width $\Omega \cdot \mu m^2$ access ρ
\rightarrow thinner layers, higher current density high power density \rightarrow narrow junctions small junctions \rightarrow low resistance contacts	<u>base</u>	64 2.5	18 0.7	nm contact width, $\Omega \cdot \mu m^2$ contact ρ
Key challenge: Breakdown 15 nm collector → very low breakdown	<u>collector</u>	53 36 2.75	15 125 1.3?	nm thick mA/µm² V, breakdown
Also required: low resistivity Ohmic contacts to Si very high current densities: heat	f _τ f _{max}	1000 2000	1000 2000	GHz GHz
- , , , , , , , , , , , , , , , , , , ,	PAs digital (2:1 stat	1000 480 ic divider	1000 480 metric)	GHz GHz

Assumes collector junction 3:1 wider than emitter. Assumes SiGe contacts no wider than junctions

Interconnects

III-V MIMIC Interconnects -- Classic Substrate Microstrip

all factors require very thin substrates for >100 GHz ICs \rightarrow lapping to ~50 μ m substrate thickness typical for 100+ GHz

Line spacings must be ~3*(substrate thickness)

Coplanar Waveguide

40 Gb/s differential TWA modulator driver note CPW lines, fragmented ground plane

35 GHz master-slave latch in CPW note fragmented ground plane

175 GHz tuned amplifier in CPW note fragmented ground plane

III-V MIMIC Interconnects -- Thin-Film Microstrip

III-V MIMIC Interconnects -- Inverted Thin-Film Microstrip

narrow line spacing \rightarrow *IC density*

No breaks in ground plane

... no ground breaks at device placements

still have problem with package grounding

...need to flip-chip bond

InP 150 GHz master-slave latch

InP 8 GHz clock rate delta-sigma ADC

If It Has Breaks, It Is Not A Ground Plane !

coupling / EMI due to poor ground system integrity is common in high-frequency systems whether on PC boards ...or on ICs.

No clean ground return ? \rightarrow interconnects can't be modeled !

35 GHz static divider interconnects have no clear local ground return interconnect inductance is non-local interconnect inductance has no compact model

8 GHz clock-rate delta-sigma ADC thin-film microstrip wiring every interconnect can be modeled as microstrip some interconnects are terminated in their Zo some interconnects are not terminated ...but ALL are precisely modeled

InP 8 GHz clock rate delta-sigma ADC

VLSI mm-wave interconnects with ground integrity

negligible ground breaks @ device placements

still have problem with package grounding

...need to flip-chip bond

Also:

Ground plane at *intermediate level* permits critical signal paths to cross supply lines, or other interconnects without coupling.

(critical signal line is placed above ground, other lines and supplies are placed below ground)

Modeling Interconnects, Passives in Tuned (RF) IC's

Interconnects are tuning elements

Narrow bandwidths→ precision is critical

Initial IC simulation uses CAD-systems' library of passive element models.

Final design: 2.5-Dimensional electromagnetic simulation of: lines, junctions, stubs, capacitors, resistors, pads.

150-200 GHz HBT amplifier, Urteaga et al, IEEE JSSCC, Sept. 2003

185GHz HBT amplifier, Urteaga et al, IEEE IMS, May. 2001

Modeling Interconnects: Digital & Mixed-Signal IC's

longer interconnects: **—** *lines terminated in* $Zo \rightarrow no$ *reflections.*

Shorter interconnects: _____ lines NOT terminated in Zo . But they are *still* transmission-lines. Ignore their effect at your peril !

If length << wavelength, or line delay<<risetime, short interconnects behave as lumped L and C.

Design Flow: Digital & Mixed-Signal IC's

All interconnects: thin-film microstrip environment. <u>Continuous</u> ground on one plane.

2.5-D simulations run on representative lines. various widths, various planes same reference (ground) plane.

Simulation data manually fit to CAD line model effective substrate ε_r , effective line-groun

Width, length, substrate of each line entered on CAD schematic. rapid data entry, rapid simulation.

Resistors and capacitors: 2.5-D simulation \rightarrow RLC fit RLC model used in simulation.

Network analyzer Calibration... on-wafer LRL

On-Wafer Through-Reflect-Line (TRL) Calibration

reference plane

Through

Through line should be long for large probe separation. Minimizes probe-probe coupling. Measurements normalized to the line characteristic impedance.

Reflect

Either open or short needed. Standards need not be accurate. "Open" must have Γ closer to that of open than that of short. Ports 1 & 2 must be symmetric.

 ΔL = 90 deg @center frequency. $\lambda/8 < \Delta L < 3\lambda/8$

Please see also:

http://www.ece.ucsb.edu/Faculty/rodwell/publications and presentations/publications/204vg.ppt

On-Wafer TRL: Ongoing Issues

High-f_{max} transistors have very small ($C_{cb} \rightarrow Y_{12} \rightarrow S_{12}$)

Measurements show small background Y_{12}even with extended reference planes. Particular difficulty in extracting Mason's Unilateral gain. \rightarrow Corrupts f_{max} measurement, model extraction.

Measurements normalized to line Z_0line impedance is complex at lower frequencies. \rightarrow must correct for complex Z_0 in measurements. excessive line resistance degrades precision.

TRL precision greatly impaired if lines couple to substrate; CPW line standards do not work well.

Verification of 140-220GHz TRL Calibration

M. Seo

freq, GHz

Difficulties with 140-220GHz TRL Calibration

Data on two layouts of 65 nm MOSFET

Measured Y-parameters correlate reasonably with expected device model.

Small errors in measured 2-port parameters result in large changes in Unilateral gain and Rollet's stability factor; neither measurement is credible.

Y₁₂ appears to be the key problem.

IC S_{ij} measurements are fine. Transistor f_{max} measurements are hard.

50+ GHz Mixed-Signal & ECL design: **Principles &** Examples

High Speed ECL Design

Followers associated with inputs, not outputs

Emitters never drive long wires. (instability with capacitive load) d_{1}

Double termination for least ringing, send or receive termination for moderate-length lines, high-Z loading saves power but kills speed.

Current mirror biasing is more compact. Mirror capacitance→ ringing, instability. Resistors provide follower damping.

High Speed ECL Design

Layout: short signal paths at gate centers, bias sources surround core. Inverted thin film microstrip wiring.

Key: transistors in on-state operate at Kirk limited-current. \rightarrow minimizes C_{cb}/I_c delay.

Key: transistors designed for minimum \mathbb{ECL} gate delay*, not peak (f_{τ} , f_{max}). *hand expression, charge-control analysis

Example: 8:1 205 GHz static divider in 256 nm InP HBT.

205 GHz divider, Griffith et al, IEEE CSIC, Oct. 2010

mm-wave Op-Amps for Linear Microwave Amplification

Griffith et al, IEEE IMS, June. 2011

Reduce distortion with strong negative feedback

Even for 2 GHz operation, loop bandwidths must 20-40 GHz.

need very fast transistors

physically small feedback loop; bias components surround active core.

mm-wave Op-Amps for Linear Microwave Amplification

Griffith et al, IEEE IMS, June. 2011

<u>current-mode</u> analog design

...node impedances kept low with transimpedance loading \rightarrow high bandwidth

Virtual-ground input stage, Miller feedback around output stage, makes feedback insensitive to generator & load impedances. ...critical for stability in a 50 GHz loop ! (what will the op-amp be connected to ?)

Z_t-stage and loop nesting for high gain even with fast resistor-loaded circuits

mm-wave Op-Amps for Linear Microwave Amplification

40 GSample/s Sample/Hold *Design*

Bias and transmission-line design strongly follows controlled-impedance ECL examples.

RF-IC design Principles & Examples

RF-IC Design: Simple & Well-Known Procedures

There are many ways to tune port impedances: microstrip lines, MIM capacitors, transformers Choice guided by tuning losses. No particular preferences.

For BJT's, MAG/MSG usually highest for common-base. \rightarrow preferred topology.

Common-base gain is however reduced by: base (layout) inductance emitter-collector layout capacitance.

Power Amplifier Design (Cripps method)

Acknowledgement: IBM

3-stage 150-GHz Amplifier; IBM 65 nm CMOS

M. Seo, B. Jagannathan, J. Pekarik, M. Rodwell, IEEE JSSCC, Dec. 2009

220 GHz, 48 mW HBT Power Amplifier

T. Reed et al, IEEE CSIC, Oct. 2011, to be presented.

4-cell design: P_{sat} >48 mW @ 220 GHz

8-cell design: not yet fully tested: P_{sat} = ?

Technology: Teledyne 250 nm InP HBT Right-side-up thin-film microstrip wiring. Breaks in ground plane minimized.

High Frequency Bipolar IC Design

Digital, mixed-signal, RF-IC (tuned) IC designs----at very high frequencies

Even at 670 GHz, design procedures differ little from that at lower frequencies: classic IC design extends readily to the far-infrared.

<u>Key considerations: Tuned ("RF") ICs</u> Rigorous E&M modeling of all interconnects & passive elements Continuous ground plane \rightarrow required for predicable interconnect models. Higher frequencies \rightarrow close conductor planes \rightarrow higher loss, lower current

<u>Key considerations: digital & mixed-signal :</u> Transmission-line modeling of <u>all</u> interconnects Continuous ground plane \rightarrow required for predicable interconnect models. Unterminated lines within blocks; terminated lines interconnecting blocks. Analog & digital blocks design to naturally interface to 50 or 75 Ω .

Next: TMIC designs for 340 GHz, 670 GHz transceivers.