48.8mW Multi-cell InP HBT Amplifier with on-wafer power combining at 220GHz

Thomas Reed, Mark Rodwell University of California, Santa Barbara

Zach Griffith, Petra Rowell, Miguel Urteaga, Mark Field, Jon Hacker Teledyne Scientific & Imaging, LLC

treed@ece.ucsb.edu

220 GHz InP HBT Power Amplifier

- mm-Wave Power in Communications and Imaging
- 250nm Indium Phosphide HBT Technology
- MMIC Power Amplifier Cells & Combiners
- Multi-cell Power Amplifier Results

mm-Wave Power in Communications and Imaging

Systems at High Frequency

- High Bandwidth Communications
 P_{Rec} decreases as $\frac{\lambda^2}{R^2}$
- High Resolution Imaging Systems
 P_{Rec} decreases as $\frac{\lambda^4}{R^4}$
- Tx/Rx Challenges:
 - Atmospheric Attenuation
 - ▶ ~2.5 dB/km @ 220 GHz
 - +3-30dB/km w/ Fog/Rain
 - High Noise Figure
 - ▶ ~10 dB(InP)

mm-Wave Comm. requires large power

Minimum Received Power

 $P_{rec,min} = kTFBQ^2$

 $P_{rec,min} = -173.8 dBm/Hz + 10 dB(NF) + 90 dB(1Gbps) + 3 dB(Q^2) = -70.8 dBm$

Transmission Losses 300m

$$\frac{P_{rec}}{P_t} = e^{-\alpha R} G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2 = -1dB + 20dBi + 20dBi - 139dB = -100dB$$

Minimum Transmitted Power 29.2 dBm = 0.83 W

mm-Wave PA Results

250nm InP HBT Process

Device High Performance Operating Area

$f_{\rm t}, f_{\rm max}$ varies with DC Bias

- ft/fmax peak = 400/700 GHz
- ft/fmax + =
 350/590 GHz
- Highly degraded bandwidth above Vce=3V

Multi-finger HBT Modeling

- Device Modeling
 - Hole in Ground Plane
 - Multi-finger HBT performance verified
- 4-finger HBT
 - $A_{emitter} = 4 \times 0.25 \times 6 \mu m^2$
 - ft/fmax = 333/530GHz
- I-finger HBT
 - ft/fmax = 350/590GHz

Another 4-finger cell

Non-Inverted Microstrip Wiring

- Local GND
- Wider 50 Ω than inv. microstrip
- Must Model Holes in GND plane
- MIM Capacitors, Thin-Film Resistors

MMIC Power Amplifier Cells & Combiners

MMIC Power Amplifier Cell Design

A 4-finger Amplifier Cell

A 4-finger Amplifier Cell **DC** Supplies 2 2 CE CB N N <u>茵2茵2茵</u> 17 X 12 <u>م</u> 2 10 10 8 83 $\lambda/4$ Chokes

A 4-finger Amplifier Cell

Thomas Reed UCSB CSICS M.4 10/19/2011

16

Combining for High MMIC Power

- Combine 4:1 and 2:1 for larger total power
- Limits to combiners
 - ► Large IL at $L \ge \lambda_g/4$

2:1 Power Combiner

2-Cell Power Amplifier with 2:1 power combining. The die is 0.7x0.58 mm².

4:1 Power Combiner

4-cell InP HBT amplifier with 4-1 power combiners. The die is 0.7x0.65 mm².

Reduced to Lumped L/C for design

Measured 1.3 dB Insertion Loss for Back-to-back 4:1 power Combiners.

48.8 mW 4-finger Power Amplifiers

MMIC Measurements and Data

- Small Signal Measurement
 - VNA with 206-340 GHz frequency extender heads
 - SOLT calibration for circuits
- Power Sweep Measurement
 - 200 & 220 GHz frequency multiplier chains and sub-mm wave power meter
 - Insertion Loss Calibration

2-Cell PA Results

4-Cell PA Results

8-Cell Power Amplifiers

Measured P_{out} limited by 220GHz source power

Linear Power Density

• InP HBT process is a competitive high power-density technology.

Recapitulation

- Modular amplifier cells have been designed to have high gain and high output power.
- 4-cell amplifiers show 48.8 mW saturated output power at 220 GHz using InP HBTs.
- 8-cell amplifiers show 58 mW output power at 220 GHz but measurements were limited by source power.

THANK YOU!

- CSICS Technical Committee
- Zach Griffith, Mark Rodwell, and Mark Field
- UCSB Rodwell Group Members
- DARPA MTO HiFive Program

Questions?

Bonus Slides

mm-Wave Power Amplifiers

Current Power Amplifier Results

Fab	Author	Paper	Journal/Conference
Raytheon	Brown, A.	W-band GaN amplifier MMICs	IMS 2011
UCSB	Reed, T.	66.1 mW InP HBT Power Amplifier	* Not Published Yet
UCSB	Reed, T.	48.8 mW Multi-cell InP HBT Amplifier with on-wafer power combining at 220 GHz	CSICS 2011
NGST	Radisic, V.	A 50mW 220GHZ Power Amplifier Module	IMS 2010
NGST	Huang, P.P.	A 20mW G-band monolithic driver amplifier using 0.07-um InP HEMT	IEEE MTT-S 2006
UCSB	Paidi	G-band (140-220GHz) and W-band (75-110GHz) InP DHBT medium power amplifiers	IEEE Trans. Microwave Theory Tech Feb 2005
NGST	Deal, W.R.	Development of Sub-Millimeter- Wave Power Amplifiers	IEEE Trans. Microwave Theory Tech Dec 2007
NGST	Chen, Y.C.	A 95-GHz INP HEMT MMIC amplifier with 427-mW power output	IEEE Microwave and Guided Wave Letters Nov 1998
UCSB	Reed. T.	3.0 mW Common Base Power Amplifier with 3 dB Small Signal Gain at 221 GHz in InP DHBT Technology	Lester Eastman Conference 2010
NGST	Moi Y R	Sub-50nm InGaAs/InAlAs/InP HEMT for sub-millimeter wave	
NGST	Deal. W.R.	A balanced sub-millimeter wave	IMS Digest 2008
	-		-

<u>Key</u> Black – GaN Red – InP HEMT Green – My InP HBT Results Yellow – Other InP HBT Results

System Components at High Frequency

High Frequency LNAs

- 94 GHz InP mHEMT: 3dB NF
 - (Mikko Karkkainen, et al. Coplanar 94 GHz Metamorphic HEMT Low Noise Amplifiers. CSICS 2006.)
- I50-215 GHz InP HBT: 5-12dB NF
 - (Samoska, L. Towards Terahertz MMIC Amplifiers: Present Status and Trends. MTT-S 2006.)
- ▶ <u>300 GHz</u> InP HBT LNA: I I.2dB NF
 - (J. Hacker, et al. THz MMICs based on InP HBT Technology. IMS 2010.)
- ▶ <u>670 GHz</u> InP HEMT: I3dB NF
 - (Deal, W.R., et al. Low Noise Amplification at 0.67 THz Using 30nm InP HEMTs. Microwave and Wireless Components Letters July 2011.)

Rain, Fog, & Humidy Reduce Range and Reliability

MMIC Measurements and Data

- "Load Pull" Station
 - Power Sweep using VDI 200 GHz and 220GHz Multiplier Chain
 - Calorimeter—Erickson submm wave power meter
- Calibration
 - Insertion Loss calibration with the reference plane at the probe tips
 - Waveguide flange to probe tip insertion loss ~1.7dB

Above Photo Courtesy Zach Griffith

