

InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts

Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell

ECE Department, University of California, Santa Barbara, CA 93106-9560

D Loubychev, A Snyder, Y Wu, J M Fastenau, W K Liu IQE Inc., 119 Technology Drive, Bethlehem, PA 18015

Outline

- HBT Scaling Laws
- Refractory base ohmics
- Fabrication
- DHBT Epitaxial Design and Results
- Summary

Bipolar transistor scaling laws

$$\frac{1}{2\pi f_{\tau}} = \tau_{tr} + RC \qquad f_{max} = \sqrt{\frac{f_{\tau}}{8\pi R_{bb,eff}}C_{cb,eff}}$$

To *double cutoff frequencies* of a mesa HBT, must:

Keep constant all resistances and currents Reduce all capacitances and transit delays by 2

(emitter length L_e)

$$\tau_{b} \approx T_{b}^{2}/2D_{n} + T_{b}/v_{exit}$$

$$\tau_{c} = T_{c}/2v_{sat}$$
Epitaxial scaling
$$C_{cb} = \varepsilon A_{c}/T_{c}$$

$$I_{c,\max} \propto v_{eff} A_{e} (V_{cb} + \phi_{bi})/T_{c}^{2}$$

$$R_{ex} = \rho_{contact}/A_{e}$$

$$R_{bb} = \rho_{sheet} \left(\frac{W_{e}}{12L_{e}} + \frac{W_{bc}}{6L_{e}}\right) + \frac{\rho_{contact}}{A_{contacts}}$$
Ohmic contacts

InP bipolar transistor scaling roadmap

		256	128	64	32	Width (nm)
c	Emitter	8	4	2	1	Access ρ (Ω·μm²)
Desig		175	120	60	30	Contact width (nm)
	Base	10	5	2.5	1.25	Contact ρ ($\Omega \cdot \mu m^2$)
formance	Collector	106	75	53	37.5	Thickness (nm)
	Current density	9	18	36	72	mA/μm²
	Breakdown voltage	4	3.3	2.75	2-2.5	V
	f,	520	730	1000	1400	GHz
Per	f _{max}	850	1300	2000	2800	GHz

Contact diffusion

15 nm Pd diffusion

- Pd contacts diffuse in base (p-InGaAs)
- Contact resistance \uparrow for thin base
- Limits base thickness
- → Scaling Limitation

100 nm InGaAs grown in MBE

Need for non-diffusive, refractory base metal

Doping	Metal	Туре	$ ho_{c}$ (Ω-μm²)
1.5E20	Мо	As deposited	2.5
1.5E20	Ru/Mo	As deposited	1.3
1.5E20	W/Mo	As deposited	1.2
1.5E20	Ir/Mo	As deposited	1.0
2.2E20	Ir/Mo	As deposited	0.6
2.2E20	lr/Mo	Annealed	0.8

Refractory metal base contacts

Require a blanket deposition and etch-back process

Emitter process flow

W/TiW interface acts as shadow mask for base lift off *Collector* formed via *lift off* and *wet etch BCB* used to passivate and planarize devices

Base process flow – I

Blanket refractory metal

PR Planarization

Isotropic Dry etch of metal

Removes any Emitter-Base short

Base process flow – II

Lift-off Ti/Au

Low base metal resistance

Blanket SiN_x mask

Etch base contact metal in the field

Base Planarization

Epitaxial Design

T(nm)	Material	Doping (cm ⁻³)	Description
10	In _{0.53} Ga _{0.47} As	8·10 ¹⁹ : Si	Emitter Cap
15	InP	5·10 ¹⁹ : Si	Emitter
15	InP	2·10 ¹⁸ : Si	Emitter
30	InGaAs	9-5⋅10 ¹⁹ : C	Base
4.5	In _{0.53} Ga _{0.47} As	9·10 ¹⁶ : Si	Setback
10.8	InGaAs / InAlAs	9·10 ¹⁶ : Si	B-C Grade
3	InP	6 ⋅10 ¹⁸ : Si	Pulse doping
81.7	InP	9·10 ¹⁶ : Si	Collector
7.5	InP	1·10 ¹⁹ : Si	Sub Collector
7.5	In _{0.53} Ga _{0.47} As	2·10 ¹⁹ : Si	Sub Collector
300	InP	2·10 ¹⁹ : Si	Sub Collector
Substrate	SI : InP		

Low Base doping

- \rightarrow Good refractory ohmics not possible
- \rightarrow Pd/W contacts used

Results - DC Measurements

1-67 GHz RF Data

Single-pole fit to obtain cut-off frequencies

Equivalent Circuit

Large undercut in base mesa

Pd/W adhesion issue

 \rightarrow High R_{bb}

 \rightarrow Low $f_{\rm max}$

Pd/W adhesion issue

Summary

- Demonstrated a planarized, etch back process for refractory base contacts
- Demonstrated DHBTs with peak $f_{\tau} / f_{max} = 410/690 \text{ GHz}$
- Higher base doping, thinner base and refractory base ohmics needed to enable higher bandwidth devices

Thank You

Questions?

This work was supported by the DARPA THETA program under HR0011-09-C-006.

A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415